
Windows Fundamentals
http://www.functionx.com/win32/index.htm

http://www.functionx.com/visualc/index.htm

Introduction to windows Overview

Microsoft Windows is an operating system that helps a person interact with a personal computer (PC).
Programmers who want to create applications that people can use on MS Windows base them on a library
called Win32.

Win32 is a library of data types, constants, functions, and classes (mainly structures) used to create applications
for the Microsoft Windows operating system.

To create a basic application, you will first need a compiler that runs on a Microsoft Windows operating
system. Although you can apply Win32 on various languages, including Pascal (namely Borland Delphi), we
will use only one language. In reality the Win32 library is written in C, which is also the primary language of
the Microsoft Windows operating systems. All of our programs will be written in C++. You will not see a
difference between C and C++ in our programs. Although all of the structures of Win32 are mostly C objects,
we will use Win32 as if it were a C++ library. This simply means that, whenever needed, we will apply C++
rules.

Creating a Win32 Program

All Win32 programs primarily look the same and behave the same but, just like C++ programs, there are small
differences in terms of creating a program, depending on the compiler you are using. For my part, I will be
testing our programs on Borland C++ Builder, Microsoft Visual C++ 6, Dev-C++, and Microsoft Visual C++
.NET.

For a basic Win32 program, the contents of a Win32 program is the same. You will feel a difference only when
you start adding some objects called resources.

Using Borland C++ Builder

To create a Win32 program using Borland C++ Builder, you must create a console application using the Console
Wizard. You must make sure you don't select any option from the Console Wizard dialog box. After clicking OK,
you are presented with a semi-empty file that contains only the inclusion of the windows.h library and the
WinMain() function declaration. From there, you are ready.

From most environments used, Borland C++ builder is the only one that provides the easiest, but also
unfortunately the emptiest template to create a Win32 application. It doesn't provide any real template nor any
help on what to do with the provided file. In defense of the Borland C++ Builder, as you will see with Microsoft
Visual C++ and Dev-C++, the other environments may fill your file with statements you don't need, you don't
like, or you don't want. Therefore, Borland C++ Builder provides this empty file so you can freely decide how you
want to create you program and what you want to include in your program. This means that I agree with Borland
C++ Builder providing you with an empty file because at least the syntax of the WinMain() function is provided
to you.

Practical Learning: Introducing Windows Programming

1. Start Borland C++ Builder (5 or 6 I don't care and it doesn't matter).

2. On the main menu, click File -> New... or File -> New -> Other...

1

javascript:HHCTRL.TextPopup(Action,popfont,9,9,-1,-1)
http://www.functionx.com/win32/Lesson01.htm
http://www.functionx.com/win32/Lesson01.htm
http://www.functionx.com/win32/Lesson01.htm
http://www.functionx.com/visualc/index.htm
http://www.functionx.com/win32/index.htm

3. In the New Items dialog box, click Console Wizard and click OK

4. In the Console Wizard, make sure that only the C++ radio button is selected:

5. Click OK.
You are presented with a file as follows:

//---

#include <windows.h>
#pragma hdrstop

//---

#pragma argsused
WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow)
{
return 0;
}

//---

2

6. Save the application in a new folder named Win32A

7. Save the first file as Main.cpp and save the project as SimpleWindow

Using Microsoft Visual C++

To create a Win32 application using Microsoft Visual C++, display the New (5 and 6 versions) or New Project
(.Net version) dialog box and select Win32 application (5 and 6) or Win32 Project (.Net) item.

Microsoft Visual C++ provides the fastest and fairly most complete means of creating a Win32 application. For
example it provides a skeleton application with all of the code a basic application would need. Because we are
learning Win32, we will go the hard way, which consists of creating an application from scratch. If fact, this
allows me to give almost (but not exactly) the same instructions as Borland C++ Builder.

1. Start Start the Microsoft Development Environment.

2. On the main menu, click File -> New... or File -> New -> Project...

3. In the New or New Project dialog box, click either Win32 Application or click Visual C++ Projects and Win32
Project:

3

4. In the location, type the path where the application should be stored, such as C:\Programs\MSVC

5. In the Name edit box, type the name of the application as Win32A and click OK

6. In the next dialog box of the wizard, if you are using MSVC 5 or 6, click the An Empty Project radio button:

If you are using MSVC .Net, click Application Settings, then click the Console Application radio button, then click
the Empty Project check box:

7. Click Finish. If you are using MSVC 6, you will be presented with another dialog box; in this case click OK

8. To create the first needed file of the program, if you are using MSVC 5 or 6, on the main menu, click File ->
New. If you are using MSVC .Net, on the main menu, click Project -> Add New Item...

9. If you are using MSVC .Net, make sure that Visual C++ is selected in the Categories tree view.
In both cases click either C++ Source File or C++ File (.cpp)

4

10. In the
Name edit box, replace the contents with a name for a file. In the case, replace it with Main and press Enter

About Microsoft Windows Messages

A computer application is equipped with Windows controls that allow the user to interact with the computer.
Each control creates messages and sends them to the operating system. To manage these messages, they are
handled by a function pointer called a Windows procedure. This function can appear as follows:

LRESULT CALLBACK MessageProcedure(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam);

This function uses a switch control to list all necessary messages and process each one in turn. This processes only
the messages that you ask it to. If you have left-over messages, and you will always have un-processed messages,
you can call the DefWindowProc() function at the end to take over.

The most basic message you can process is to make sure a user can close a window after using it. This can be done
with a function called PostQuitMessage(). Its syntax is:

VOID PostQuitMessage(int nExitCode)

5

This function takes one argument which is the value of the LPARAM argument. To close a window, you can pass
the argument as WM_QUIT.

Based on this, a simple Windows procedure can be defined as follows:

LRESULT CALLBACK WndProcedure(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM lParam)
{
switch(Msg)
{
case WM_DESTROY:
PostQuitMessage(WM_QUIT);
break;
default:
return DefWindowProc(hWnd, Msg, wParam, lParam);
}
return 0;
}

Introduction to Resources

Introduction

A resource is an object that cannot be defined in C++ terms but that is needed to complete a
program. In the strict sense, it is text that contains a series of terms or words that the
program can interpret through code. Examples of resources are menus, icons, cursors, dialog
boxes, sounds, etc.

There are various means of creating a resource and the approach you use depends on the
resource. For example, some resources are completely text-based, such is the case for the
String Table or the Accelerator Table. Some other resources must be designed, such is the case
for icons and cursors. Some other resources can be imported from another, more elaborate
application, such is the case for high graphic pictures. Yet some resources can be a
combination of different resources.

Resource Creation
As mentioned already, resources are not a C++ concept but a Microsoft Windows theory of
completing an application. Therefore, the programming environment you use may or may not
provide you with the means of creating certain resources. Some environments like Borland C++
Builder or Visual C++ (6 and .NET) are complete with (almost) anything you need to create
(almost) any type of resources. Some other environments may appear incomplete, allowing you
to create only some resources, the other resources must be created using an external application
not provided; such is the case for C++BuilderX.

Upon creating a resource, you must save it. Some resources are created as their own file, such is
the case for pictures, icons, cursors, sound, etc. Each of these resources has a particular
extension depending on the resource. After creating the resources, you must add them to a file
that has the extension .rc. Some resources are listed in this file using a certain syntax. That's the
case for icons, cursors, pictures, sounds, etc. Some other resources must be created directly in
this file because these resources are text-based; that's the case for menus, strings, accelerators,

6

http://www.functionx.com/win32/Lesson02.htm

version numbers, etc.

After creating the resource file, you must compile it. Again, some environments, such as
Microsoft Visual C++, do this automatically when you execute the application. Some other
environments may require you to explicitly compile the resource. That's the case for Borland C++
Builder and C++BuilderX. (The fact that these environments require that you compile the
resource is not an anomaly. For example, if you create a Windows application that is form-based
in C++ Builder 6 or Delphi, you can easily add the resources and they are automatically compiled
and added to the application. If you decide to create a Win32 application, C++ Builder believes
that you want to completely control your application; so, it lets you decide when and how to
compile a resource. This means that it simply gives you more control).

1.
Practical Learning: Introducing Windows Resources

If you are using Borland C++ Builder, create a new Win32 application using Console Wizard
as we did in Lesson 1

a. Save the project as Resources1 in a new folder called Resources1

b. Save the unit as Exercise.cpp

2. If you are using Microsoft Visual C++,

a. Create a new Win32 Application as done the previous time. Save the project as
Resources1 and

b. Create a new C++ Source file named Exercise.cpp

3. Implement the source file as follows(for Borland C++ Builder, only add the parts that are not
in the code):

//---
#include <windows.h>
#pragma hdrstop

//---

#pragma argsused
//---
const char *ClsName = "FundApp";
const char *WndName = "Resources Fundamentals";
LRESULT CALLBACK WndProcedure(HWND hWnd, UINT uMsg,

 WPARAM wParam, LPARAM lParam);
//---
INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{

MSG Msg;
HWND hWnd;

WNDCLASSEX WndClsEx;

// Create the application window
WndClsEx.cbSize = sizeof(WNDCLASSEX);
WndClsEx.style = CS_HREDRAW | CS_VREDRAW;
WndClsEx.lpfnWndProc = WndProcedure;
WndClsEx.cbClsExtra = 0;
WndClsEx.cbWndExtra = 0;

7

http://www.functionx.com/win32/Lesson02.htm

WndClsEx.hIcon = LoadIcon(NULL, IDI_APPLICATION);
WndClsEx.hCursor = LoadCursor(NULL, IDC_ARROW);
WndClsEx.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
WndClsEx.lpszMenuName = NULL;
WndClsEx.lpszClassName = ClsName;
WndClsEx.hInstance = hInstance;
WndClsEx.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

// Register the application
RegisterClassEx(&WndClsEx);

// Create the window object
hWnd = CreateWindowEx(0,

 ClsName,
 WndName,
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 NULL,
 NULL,
 hInstance,
 NULL);

// Find out if the window was created
if(!hWnd) // If the window was not created,

return FALSE; // stop the application

// Display the window to the user
ShowWindow(hWnd, nCmdShow);// SW_SHOWNORMAL);
UpdateWindow(hWnd);

// Decode and treat the messages
// as long as the application is running
while(GetMessage(&Msg, NULL, 0, 0))
{

 TranslateMessage(&Msg);
 DispatchMessage(&Msg);

}

return Msg.wParam;
}
//---
LRESULT CALLBACK WndProcedure(HWND hWnd, UINT Msg,

 WPARAM wParam, LPARAM lParam)
{
 switch(Msg)
 {
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 // Process the left-over messages
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 // If something was not done, let it go

8

 return 0;
}

4. //---
 Execute the application to test it

List-Based Resources

Menus

Introduction

A menu is a list of commands that allow the user to interact with an application. To use one of
the commands, the user accesses the list and clicks the desired item. There are two main types
of menus. On most applications, a menu is represented in the top section with a series of
words such as File, Edit, Help. Each of these words represents a category of items. To use this
type of menu, the use can display one of the categories (using the mouse or the keyboard). A
list would display and the user can select one of the items. The second type of menu is called
context sensitive. To use this type of menu, the user typically right-clicks a certain area of the
application, a list comes up and the user can select one of the items from the list.

1.
Practical Learning: Introducing List-Based Resources
Create a new Win32 Project named Resources2 and create it as an empty project

2. On the main menu, click Project -> Add Resource...

3. Double-click Icon and design it as follows (make sure you add the 16x16 version)

4.
32 x 32 16 x 16

Change the ID of the icon to IDI_RESFUND2 and its File Name to resfund2.ico

9

5. Create a source file and name it Exercise

6. From what we have learned so far, type the following code in the file:

7.

10

//--

#include <windows.h>
#include "resource.h"

//--

LRESULT CALLBACK WndProcedure(HWND hWnd, UINT uMsg,

 WPARAM wParam, LPARAM lParam);
//--

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{

MSG Msg;
HWND hWnd;
WNDCLASSEX WndClsEx;

 const char *ClsName = "ResFund";
 const char *WndName = "Resources Fundamentals";

// Create the application window
WndClsEx.cbSize = sizeof(WNDCLASSEX);
WndClsEx.style = CS_HREDRAW | CS_VREDRAW;
WndClsEx.lpfnWndProc = WndProcedure;
WndClsEx.cbClsExtra = 0;
WndClsEx.cbWndExtra = 0;
WndClsEx.hIcon = LoadIcon(hInstance,

 MAKEINTRESOURCE(IDI_RESFUND2));
WndClsEx.hCursor = LoadCursor(NULL, IDC_ARROW);
WndClsEx.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
WndClsEx.lpszMenuName = NULL;
WndClsEx.lpszClassName = ClsName;
WndClsEx.hInstance = hInstance;
WndClsEx.hIconSm = LoadIcon(hInstance,

 MAKEINTRESOURCE(IDI_RESFUND2));

// Register the application
RegisterClassEx(&WndClsEx);

// Create the window object
hWnd = CreateWindowEx(0,

 ClsName,
 WndName,
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 NULL,
 NULL,
 hInstance,
 NULL);

// Find out if the window was created
if(!hWnd) // If the window was not created,

return FALSE; // stop the application

11

Menu Creation

A menu is one of the text-based resources. It is created directly in the rc file. As with other
resources, the process of creating a menu depends on the environment you are using. If you
are using Borland C++ Builder, you can open your rc file and manually create your menu.

If you are using Microsoft Visual C++, you can use the built-in menu editor. In this case, the
actual text that defines and describes the menu would be automatically added to the rc file.

Practical Learning: Creating a Menu

1. On the main menu, click Project -> Add Resource...

2. In the Insert Resource dialog box, click Menu and click New

3. While the first menu item is selected, type &File

4. Click the next empty item under File. Type &New

5. In the Properties window, click the ID edit box, type IDM_FILE_NEW and press Enter

6. Click the next empty item under New and type &Open

7. In the Properties window, click the ID edit box, type IDM_FILE_OPEN and press Tab

8. Click the next empty item under Open and type -

9. Click the next empty item under the new separator and type E&xit

10. In the Properties window, click the ID edit box, type IDM_FILE_EXIT and press Tab. In
the Caption edit box, press Enter

11. Click the next empty item on the right side of File. Type &Help

12. Click the next empty item under Help and type &About

13. In the Properties window, click the ID edit box, type IDM_HELP_ABOUT and press Tab.
In the Caption edit box, and press Enter

14. In the ResourceView tab of the Workspace, under the Menu node, click IDR_MENU1. In
the Menu Properties window, change the ID to IDR_MAINFRAME

15.Open the Exercise.cpp source file and change the lpszMenuName member of the
WndClsEx variable as follows:

16. WndClsEx.lpszMenuName = MAKEINTRESOURCE(IDR_MAINFRAME);

To test the application, press Ctrl + F5 and press Enter

12

17.Return to your programming environment

String Tables

Introduction

As its name indicates, a string table is a list of strings created in the resource file. Like the
menu resource, the string table is created directly in the resource file. The advantage of using
a string table is that the string defined in it are declared globally, meaning that they can be
accessed by any object of the application without being declared

String Table Creation

As mentioned already, a string table is created in the rc file. Therefore, in Borland C++ Builder
and other environments, the list can be manually entered in the resource file. In Visual C++, to
create the list, you can add the String Table from the Add Resource dialog box. This opens a
special window in which you can edit each string.

Besides new strings you create in the list with their own new identifiers, you can also use the
string table to assign strings to already created identifiers. For example, to can assign a string
to some or all of the menu items we created earlier.

After creating a string table, you can access any of its strings from anywhere in the application.
To access a string, call the LoadString() function.

Practical Learning: Creating and Using a String Table

1. To create a string table, on the main menu, click Project -> Add Resource...

2. In the Add Resource dialog box, double-click String Table

3. Replace the first IDS_ identifier with IDS_APP_NAME and press Tab twice

4. Type the string as Fundamentals of Windows Resources and press Enter

5. In the same way, create the following strings and their identifiers (let the string table add
the Values):

13

6.

Value
IDM_ARROW 105 No tool selected
IDM_DRAW_LINE 106 Selects the Line tool\nLine
IDM_DRAW_RECTANGLE 107 Selects the Rectangle tool\nRectangle
IDM_DRAW_ELLIPSE 108 Selects the Ellipse tool\nEllipse

To assign to an existing identifier, click the arrow of the second identifier and select
IDM_FILE_NEW

7. Click its corresponding Caption section and type Creates a new file\nNew

8. To use a string from the string table, change the source file as follows:

14

9.

//---

#include <windows.h>
#include "resource.h"

//---

char AppCaption[40];
LRESULT CALLBACK WndProcedure(HWND hWnd, UINT uMsg,

 WPARAM wParam, LPARAM lParam);
//---

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow)
{

MSG Msg;
HWND hWnd;
WNDCLASSEX WndClsEx;
const char *ClsName = "ResFund";

LoadString(hInstance, IDS_APP_NAME, AppCaption, 40);

// Create the application window
WndClsEx.cbSize = sizeof(WNDCLASSEX);
WndClsEx.style = CS_HREDRAW | CS_VREDRAW;
WndClsEx.lpfnWndProc = WndProcedure;
WndClsEx.cbClsExtra = 0;
WndClsEx.cbWndExtra = 0;
WndClsEx.hIcon = LoadIcon(hInstance,

 MAKEINTRESOURCE(IDI_RESFUND2));
WndClsEx.hCursor = LoadCursor(NULL, IDC_ARROW);
WndClsEx.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
WndClsEx.lpszMenuName = MAKEINTRESOURCE(IDR_MAINFRAME);
WndClsEx.lpszClassName = ClsName;
WndClsEx.hInstance = hInstance;
WndClsEx.hIconSm = LoadIcon(hInstance,

MAKEINTRESOURCE(IDI_RESFUND2));

// Register the application
RegisterClassEx(&WndClsEx);

// Create the window object
hWnd = CreateWindowEx(0,

 ClsName,
 AppCaption,
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 NULL,
 NULL,
 hInstance,
 NULL);

// Find out if the window was created

15

Toolbars

Introduction

A toolbar is an object used to let the user perform actions on an application. Like the menu, the
toolbar provides a list of commands. While a menu may require various actions to get to the
desired command, a toolbar presents buttons that would lead to the same actions as the menu,
only faster. As such, a toolbar is mainly made of buttons placed on it, but a toolbar can also
contain many other types of controls.

Toolbar Creation

A toolbar is primarily made of buttons that each displays a small icon, typically 16x16. If you
intend to create this type of toolbar, you can start by creating one or more pictures. There are
two main types of pictures you would use. The first type uses a kind of picture called a bitmap
(we will learn about bitmaps in future lessons). You can create a long picture resource that has
a height of 16 pixels (a toolbar can also be taller than that but this height is the most
common). Then, add a factor of 16 pixels width for each desired button. This means that, if the
toolbar will have one button, you can create a bitmap of 16x16 pixels. If the toolbar will have 4
buttons, you can create a bitmap of height = 16pixels and width = 16 * 4 = 64pixels. After
creating this type of bitmap, save it and give it an identifier. The other type of toolbar can use
icons that each is created on its own.

Like most other objects you will use in your applications, a toolbar should have an identifier.
This would help you and Windows identifier the toolbar.

Since a toolbar is made of small buttons, each button is an object of type TBBUTTON. The
TBBUTTON structure is defined as follows:

typedef struct _TBBUTTON {
 int iBitmap;
 int idCommand;
 BYTE fsState;
 BYTE fsStyle;
#ifdef _WIN64
 BYTE bReserved[6] // padding for alignment
#elif defined(_WIN32)
 BYTE bReserved[2] // padding for alignment
#endif
 DWORD_PTR dwData;
 INT_PTR iString;
} TBBUTTON, NEAR *PTBBUTTON *LPTBBUTTON;

The buttons are stored in an array of TBBUTTON values.

Unlike the other resources we have used so far, to add a toolbar to your application, you must
programmatically create it. To do this, call either the CreateWindowEx or the
CreateToolbarEx() function. The syntax of the CreateToolbarEx() function is:

HWND CreateToolbarEx(HWND hwnd,
 DWORD ws,
 UINT wID,
 int nBitmaps,
 HINSTANCE hBMInst,
 UINT_PTR wBMID,

16

 LPCTBBUTTON lpButtons,
 int iNumButtons,
 int dxButton,
 int dyButton,
 int dxBitmap,
 int dyBitmap,
 UINT uStructSize
);

The first argument is the window that serves as the parent to the toolbar. This is usually the
first window you would have created.

The second argument specifies the style used to display the toolbar. This parameter is a
combination of windows styles and toolbar styles.

The third argument is the identifier of the toolbar.

The nBitmaps is used to specify the number of pictures included in the bitmap you will use

The hBMInst is the application that will manage the toolbar

The hBMID is an identifier of the bitmap

The lpButtons argument is a pointer to the array of TBBUTTON values you have defined
already.

The iNumButtons specifies the number of buttons that will be created on the toolbar

The dxButton and dyButton parameters represent the dimension of each button

The dxBitmap and dyBitmap parameters represent the dimension of the bitmap that will be
used on the buttons

The last argument is the size of the TBBUTTON structure.

The functions and classes (actually, structures) used to create and manage a toolbar are
defined in the commctrl.h header file. The commctrl.h header is part of the comctl32.lib library.
This library is not carried by the windows.h header or its associated libraries. Therefore, since
the toolbar belongs to the family of Common Controls, you must explicitly add the comctl32.lib
library whenever you want to use one of them.

Practical Learning: Creating a Toolbar

1. To include the comctl32.lib library in your application, on the main menu, click Project -> Add
Existing Item...

2. Locate the folder that contains your libraries and display it in the Look In combo box. For Visual
C++ 6.0, this would be in Drive:\Program Files\Microsoft Visual Studio\VC98\Lib

17

For Visual C++ .NET, this would be Drive:\Program Files\Microsoft Visual Studio .NET
2003\VC7\PlatformSDK\Lib

18

3. Click ComCtl32.Lib

19

4. Click Open

5. To start a toolbar, on the main menu, click Project -> Add Resources and double-click Bitmap

6. Design the bitmap as 96 x 16 (width x height) as follows:

7. Change its ID to IDB_STANDARD and its file name to standard.bmp

8. To add the toolbar to the application, change the source file as follows:

20

9.

//---

#include <windows.h>
#include <commctrl.h>
#include "resource.h"

//---

char AppCaption[40];
HINSTANCE hInst;
const int NUMBUTTONS = 7;
LRESULT CALLBACK WndProcedure(HWND hWnd, UINT uMsg,

 WPARAM wParam, LPARAM lParam);
//---

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{

MSG Msg;
HWND hWnd;
WNDCLASSEX WndClsEx;

 const char *ClsName = "ResFund";

LoadString(hInstance, IDS_APP_NAME, AppCaption, 40);

hInst = hInstance;

// Create the application window
WndClsEx.cbSize = sizeof(WNDCLASSEX);
WndClsEx.style = CS_HREDRAW | CS_VREDRAW;
WndClsEx.lpfnWndProc = WndProcedure;
WndClsEx.cbClsExtra = 0;
WndClsEx.cbWndExtra = 0;
WndClsEx.hIcon = LoadIcon(hInstance,

MAKEINTRESOURCE(IDI_RESFUND2));

WndClsEx.hCursor = LoadCursor(NULL, IDC_ARROW);
WndClsEx.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
WndClsEx.lpszMenuName = MAKEINTRESOURCE(IDR_MAINFRAME);
WndClsEx.lpszClassName = ClsName;
WndClsEx.hInstance = hInst;
WndClsEx.hIconSm = LoadIcon(hInstance,

MAKEINTRESOURCE(IDI_RESFUND2));

// Register the application
RegisterClassEx(&WndClsEx);

// Create the window object
hWnd = CreateWindowEx(0,

 ClsName,
 AppCaption,
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,

Execute

21

Dialog Boxes

Message Boxes
Introduction

A message box is a rectangle object that displays short message to the user. The message can
be made of one sentence, one paragraph, or a few paragraphs. To make the creation of a
message box easy, the Win32 library provides a specific function that can be used to for this
purpose.

Message Box Creation

To create a message box, use the MessageBox() function. Its syntax is:

int MessageBox(HWND hWnd, LPCTSTR lpText, LPCTSTR lpCaption, UINT uType);

The first argument, hWnd, can be a handle to the window from where the message box will be
called. Otherwise, it can NULL.

The second argument, lpText, is a null-terminated string, such as an array of characters. This is
the actual message that will be presented to the user. As stated already, it can be one word, a
whole sentence, a paragraph, even a hew paragraphs.

The third argument, lpCaption, is the title that will display on the title bar. It also can be a null-
terminated string, if you know what title you would like to display. Otherwise, it can be NULL,
in which case the title bar would display Error.

The simplest way you can create a message is by calling the MessageBox() function with all
arguments set to NULL, in which case the message box would not make any sense:

MessageBox(NULL, NULL, NULL, NULL);

As stated already, the first argument is either a handle of the window that is calling it, or NULL.

The simplest way to specify the second argument is by including a word or a sentence in
double-quotes. Here is an example:

22

MessageBox(NULL, "I am just trying my wedding dress", NULL, NULL);

If you want to display the message on various lines, you can separate sections with the new
line character '\n'. Here is an example:

MessageBox(NULL, "It happened earlier\nDidn't it?", NULL, NULL);

You can also use string editing techniques to create a more elaborate message. This means
that you can use functions of the C string library to create your message.

The caption of the message can be any word or sentence but convention wisdom would like this
sentence to be in tune with the actual message. After all, unless the message is about bad
news, Error as a title is not particularly cute.

The fourth argument actually does three things. First it displays one or a few buttons. The
buttons depend on the value specified for the argument. If this argument is NULL, the message
box displays (only) OK. The values and their buttons can be as follows:

Constant Integer Buttons

 MB_OK

 MB_OKCANCEL

 MB_ABORTRETRYIGNORE

 MB_YESNOCANCEL

 MB_YESNO

 MB_RETRYCANCEL

MB_CANCELTRYCONTINUE

 MB_HELP

Besides the buttons, the message box can also display a friendly icon that accompanies the
message. Each icon is displayed by specifying a constant integer. The values and their buttons
are as follows:

23

Value Icon Suited when
MB_ICONEXCLAMATION

MB_ICONWARNING
Warning the user of an action performed on
the application

MB_ICONINFORMATION
MB_ICONASTERISK

Informing the user of a non-critical
situation

MB_ICONQUESTION Asking a question that expects a Yes or No,
or a Yes, No, or Cancel answer

MB_ICONSTOP
MB_ICONERROR
MB_ICONHAND

A critical situation or error has occurred.
This icon is appropriate when informing the
user of a termination or deniability of an
action

The icons are used in conjunction with the buttons constant. To combine these two flags, use
the bitwise OR operator “|”.

The second thing this fourth argument does is to let the user close the message box after
selecting one of the buttons. Once the user clicks one of the buttons, the message box is
closed.

The third role of this fourth argument is to control the result derived from the user dismissing
the message box. For example, clicking OK usually means that the user acknowledges what the
message. Clicking Cancel usually means the user is changing his or her mind about the action
performed previously. Clicking Yes instead of No usually indicates that the user agrees to
perform an action.

In reality, the message box only displays a message and one or a few buttons. It is your
responsibility as the programmer to decide what to do when what button is clicked.

When a message box is configured to display more than one button, the operating system is
set to decide which button is the default. The default button has a thick border that sets it
apart from the other button(s). If the user presses Enter, the message box would behave as if
the user had clicked the default button. Fortunately, if the message box has more than one
button, you can decide what button would be the default. To specify the default button, use one
of the following constants:

Value If the message box has more than one
button, the default button would be

MB_DEFBUTTON1 The first button
MB_DEFBUTTON2 The second button
MB_DEFBUTTON3 The third button
MB_DEFBUTTON4 The fourth button

To specify the default button, use the bitwise OR operator to combine the constant integer of
the desired default button with the button's constant and the icon.

Practical Learning: Introducing Additional Resources

1. Create a new Win32 application

2. If you are using Borland C++ Builder, save the application in a new folder called Win32C and
save the project as MessageBox

24

If you are using Microsoft Visual C++, set the location to a folder called Win32C

3. If you are using Borland C++ Builder, save the unit as Main.cpp
If you are using Microsoft Visual C++, create a C++ source file and save it as Main.cpp

4.
//---
#include <windows.h>

//---
INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 MessageBox(NULL, "Welcome to Win32 Application Development\n", NULL, NULL);

 return 0;
}
//---

Replace the file's content with the following:

5. Test the program and return to your programming environment

6. To create a more elaborate message, change the file as follows:

7.

//---

#include <windows.h>

//---

const char Caption[] = "Application Programming Interface";

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 MessageBox(NULL,
 "Welcome to Win32 Application Development\n"
 "You will learn about functions, classes, "
 "communication, and other cool stuff\n"
 "Are you ready to rumble!!!!!!!!!!!!!!",
 Caption,
 MB_YESNOCANCEL | MB_ICONQUESTION);

 return 0;
}
//---
-------- Test

the application

8.

25

http://www.functionx.com/win32/Lesson04.htm
http://www.functionx.com/win32/Lesson04.htm

Return to your programming environment

Dialog Boxes

Introduction

A dialog box is a rectangular object that displays a message, a control, or a few controls,
allowing the user to interact with an application.

A dialog box is created from a resources file, which is a file with the rc extension. The resource
file contains all pertinent information about the dialog box. This means that, in this file, you
must specify the size and location of the dialog box, its caption, whether it contains buttons.

After creating the resource file, make sure you add it to your project so you can compile it.

There are two main reasons you would create or use a dialog box. You can create a dialog-
based application, that is, a dialog that uses only one or a few dialog box. You can also use a
dialog box as an addition to your application.

Using Borland C++ Builder

1. Create a new Win32 application using the Console Wizard

2. Save the application in a new folder called Win32D and save the project as DialogBox

3. Save the unit as Main.cpp

4. To create the resource header file, on the main menu, click File -> New... or File -> New
-> Other...

5. In the New Items dialog box, click Header File and click OK

6. Save the new file as Resource.h (make sure you specify the .h extension when saving
the file.

7. In the empty header file, type:

8. #define IDD_DLGFIRST 101

To create the rc resource file, on the main menu of C++ Builder, click File -> New ->
Other...

9. In the New Items dialog box, click the Text icon and click OK

10. To save the resource file, on the Standard toolbar, click the Save All button

11. Type the file name as "Win32D.rc" (the double-quotes allow you to make sure the file is
saved as rc and not as txt)

26

12. In the empty file, type the following (the referenced header file will be created next):

13.

#include "Resource.h"

IDD_DLGFIRST DIALOG 260, 200, 188, 95
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Win32 Programming"
FONT 8, "MS Shell Dlg"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 130, 10, 50, 14
END

In the Code Editor, click the Win32D.rc tab to select it. To compile the resource, on the
main menu of Bcb, click Project -> Compile Unit

14.After the unit has been compiled, click OK

15. To add the rc file to the project, on the main menu, click Project -> Add To Project...

16.Select Win32D.rc and click Open

Using Microsoft Visual C++

1. Create a new Win32 Application. Specify the desired path in the Location edition box. In
the Project Name, type Win32D

2. Make sure you create it as an Empty Project.

3. To create a dialog box along with the resource files, on the main menu, click Insert ->
Resource...

4. In the Insert Resource dialog box, click Dialog and click New

5. Right-click in the main body of the new dialog box and click Properties. In the Dialog
Properties window, change the ID to IDD_DLGFIRST and press Tab.

6. In the Caption box, type Win32 Programming

7. In the X Pos box, type 260

8. In the Y Pos box, type 200

9. To close and save the resource file, click the system Close button of the Script1 -
IDD_DLGFIRST window (or the lower X in the upper-right section)

10.When asked whether you want to save the script, click Yes.

11. Locate the folder in which the application is being created (in this case Win32D) and
display it in the Save In combo box.

12. In the File Name box, replace the Script1 name with Win32D.rc and click Save

13. To add the rc file to your project, on the main menu, click Project -> Add To Project ->
Files...

14.Select Win32D.rc and click OK.

15. To create the main source file of the project, on the main menu, click File -> New...

16. In the Files property page of the New dialog box, click C++ Source File. In the File Name
edit box, type Main and press Enter.

Programmatically Creating Dialog Boxes

27

A dialog box is created using the DialogBox function. Its syntax is:

INT_PTR DialogBox(HINSTANCE hInstance, LPCTSTR lpTemplate, HWND hWndParent,
DLGPROC lpDialogFunc);

The first argument of this function is a handle to the application that is using the dialog box.

The lpTemplate specifies the dialog box template.

The hWndParent is a handle to the parent window that owns this dialog box.

The lpDialofFunc must a procedure that is in charge of creating this dialog box.

Therefore, you must define a CALLBACK procedure that whose syntax is:

INT_PTR CALLBACK DialogProc(HWND hwndDlg, UINT uMsg, WPARAM wParam, LPARAM
lParam);

1. In the Main.cpp file, create the program as follows:

28

2.

#include <windows.h>
#include "Resource.h"

//---

HWND hWnd;
LRESULT CALLBACK DlgProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam);
//---

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)
{

DialogBox(hInstance, MAKEINTRESOURCE(IDD_DLGFIRST),
 hWnd, reinterpret_cast<DLGPROC>(DlgProc));

return FALSE;
}
//---

LRESULT CALLBACK DlgProc(HWND hWndDlg, UINT Msg, WPARAM wParam,
LPARAM lParam)
{

switch(Msg)
{
case WM_INITDIALOG:

return TRUE;

case WM_COMMAND:
switch(wParam)
{
case IDOK:

EndDialog(hWndDlg, 0);
return TRUE;

}
break;

}

return FALSE;
}
//---

Test the program

Windows Messages

Introduction to Messages

Microsoft Window as a Messaging Center

29

The computer is a machine that only follows instructions. It almost doesn't know anything. Because
of this, the computer cannot predict what a user wants to do with the computer. In fact, a great deal
of the responsibility is left to the programmer who must decide what can and cannot or should not
be done on an application. To help the users with computer interaction, the operating system
provides a series of objects called Windows controls. The programmer decides what objects are
necessary for a given application.

Each computer application is equipped with Windows controls that allow the user to interact with the
computer. Because the computer cannot and would not predict what the user wants to do when
using the computer, the operating system lets each object tell it when it needs something from
Windows. To do this, a control sends a message to the operating system every time something is
new. Because there can be so many messages a control can send and because many controls can
send various messages, there is a formula each message or almost every one of them must follow,
just like there are rules the post office wants you to follow in order to send a letter.

A message to Windows must provide four pieces of information:

• WHO sent the message? Every object you will need in your program, just like everything in the
computer, must have a name. The operating system needs this name to identify every object,
for any reason. An object in Microsoft Windows is identified as a Handle. For Windows controls,
the handle is called HWND

• WHAT message? The object that sends a message must let the operating system know what
message it is sending. As we will learn, there are various types of messages for different
circumstances. Nevertheless, to make matters a little easier, each message is a constant
positive natural number (unsigned int) identified with a particular name. Therefore, the
message identifier is passed as UINT

• Accompanying items: Because there are so many types of messages, you must provide two
additional pieces of information to help process the message. These two items depend on the
type of message and could be anything. The first accompanying item is a 32-bit type (unsigned
int) called WPARAM (stands for WORD Parameter; in other words, it is a WORD (unsigned
int) argument). The second accompanying item is a 32-bit type of value (long) calle LPARAM
(stands for LONG Parameter; in other words, it is a LONG (long in C/C++) argument).
Remember that these two can be different things for different messages.

To manage the messages sent to Windows, they are communicated through a function pointer called
a Windows procedure. The name of the function is not important but it must return a 32-bit integer,
in fact a C/C++ long or Win32 LONG. Therefore, it is declared as LRESULT (LONG Result). Because
this is a function pointer, it must be declared and defined as CALLBACK. The messages can be
carried in a function defined as follows:

LRESULT CALLBACK MessageProcedure(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam);

To process the messages, and because there can be so many of them, this function typically uses a
switch control to list all necessary messages and process each one in turn. After processing a
message, its case must return a value indicating that the message was successfully processed or
not.

No matter how many messages you processed, there will still be messages that you did not deal
with. It could be because they were not sent even though they are part of the Windows controls
used on an application. If you didn't process some messages, you should/must let the operating
system know so it can take over. What happens is that the operating system is aware of all
messages and it has a default behavior or processing for each one of them. Therefore, you
should/must return a value for this to happen. The value returned can be placed in the default

30

section of the switch condition and must simply be a DefWindowProc() function. Its syntax is:

LRESULT DefWindowProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam);

This function is returned to Windows, saying "There are messages I couldn't process. Do what you
want with them". The operating system would simply apply a default processing to them. The values
returned by the DefWindowProc() function should be the same passed to the procedure.

The most basic message you can process is to make sure a user can close a window after using it.
This can be done with a function called PostQuitMessage(). Its syntax is:

VOID PostQuitMessage(int nExitCode)

This function takes one argument which is the value of the LPARAM argument. To close a window,
you can pass the argument as WM_QUIT.

Based on this, a simple Windows procedure can be defined as follows:

LRESULT CALLBACK WndProcedure(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM lParam)
{
 switch(Msg)
 {
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}

A basic program with one message can be written as follows:

//--

#include <windows.h>

//--

HWND hWnd;
const char ClsName[] = "WndMsg";
const char WindowCaption[] = "Windows and Controls Messages";
LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam);
//--

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 MSG Msg;
 WNDCLASSEX WndClsEx;

 WndClsEx.cbSize = sizeof(WNDCLASSEX);
 WndClsEx.style = CS_HREDRAW | CS_VREDRAW;

31

 WndClsEx.lpfnWndProc = WndProc;
 WndClsEx.cbClsExtra = NULL;
 WndClsEx.cbWndExtra = NULL;
 WndClsEx.hInstance = hInstance;
 WndClsEx.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 WndClsEx.hCursor = LoadCursor(NULL, IDC_ARROW);
 WndClsEx.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
 WndClsEx.lpszMenuName = NULL;
 WndClsEx.lpszClassName = ClsName;
 WndClsEx.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

 RegisterClassEx(&WndClsEx);

 hWnd = CreateWindowEx(WS_EX_OVERLAPPEDWINDOW,
 ClsName,
 WindowCaption,
 WS_OVERLAPPEDWINDOW,
 100,
 120,
 640,
 480,
 NULL,
 NULL,
 hInstance,
 NULL);

 ShowWindow(hWnd, nCmdShow);
 UpdateWindow(hWnd);

 while(GetMessage(&Msg, NULL, 0, 0))
 {
 TranslateMessage(&Msg);
 DispatchMessage(&Msg);
 }

 return Msg.wParam;
}
//--

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM lParam)
{
 switch(Msg)
 {
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//--

Windows Messages

32

Window Creation

WM_CREATE: Once you have decided to create a message, you send a message to Windows.
Actually, when you are creating a window, a message called WM_CREATE is sent to Windows.
This is the favorite message you can use to perform any early processing that you want to
make sure happens before most other things show up. For example, you can use this message
to initialize anything in your application. Therefore, this message is the first sent to the
operating system. Here is an example:

//--

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM lParam)
{
 switch(Msg)
 {
 case WM_CREATE:

MessageBox(NULL, "The window is being created", WindowCaption,
MB_OK);

break;
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//--

Window Display

WM_SHOWWINDOW: After a window has been created, it needs to be displayed, that is, the
window needs to be shown. Also, if the window was previously hidden, you can decide to show
it. On the other hand, if a window is displaying, you may want to hide it, for any reason you
judge necessary. To take any of these actions, that is, to show or hide a window, you must
send the WM_SHOWWINDOW message. The syntax of this message is:

OnCreate(HWND hWnd, WM_SHOWWINDOW, WPARAM wParam, LPARAM lParam);

hWnd is the window that sends the message.

wParam is a Boolean value. If you want to display or show the hWnd window, set the wParam
value to TRUE. If you want to hide the hWnd window, set this value to FALSE.

lParam specifies the status of the window.

//--

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM lParam)
{
 switch(Msg)
 {
 case WM_CREATE:

33

MessageBox(NULL, "The window is being created", WindowCaption,
MB_OK);

break;
 case WM_SHOWWINDOW:

break;
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//--

Window Activation

WM_ACTIVATE: When two or more windows are running on the computer, only one can
receive input from the user, that is, only one can actually be directly used at one particular
time. Such a window has a title bar with the color identified in Control Panel as Active Window.
The other window(s), if any, display(s) its/their title bar with a color called Inactive Window:

To manage this setting, the windows are organized in a 3-dimensional coordinate system and
they are incrementally positioned on the Z coordinate, which defines the (0, 0, 0) origin on the
screen (actually on the top-left corner of your monitor) with Z coordinate coming from the
screen towards you.

In order to use a window other than the one that is active, you must activate it. To do this, you
can send a message called WM_ACTIVATE.

The syntax of this message is:

OnActivate(HWND hWnd, WM_ACTIVATE, WPARAM wParam, LPARAM lParam);

Actually, this message is sent to two objects: the window that is being activated and the one

34

that is being deactivated.

hWnd identifies a window involved in this message and is related to the wParam parameter.

The wParam parameter specifies the action to take. It is a constant value that can be one of
the following:

Value Description
WA_ACTIVE Used to activate the window
WA_INACTIVE Used to deactivate the window without using the mouse, for example by

pressing Alt+Tab
WA_CLICKACTIVE Used to activate the window using the mouse

35

//--

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM lParam)
{
 switch(Msg)
 {
 case WM_CREATE:

MessageBox(NULL, "The window is being created", WindowCaption,
MB_OK);

break;
 case WM_ACTIVATE:

break;
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//--

Window Painting

WM_PAINT: Whenever Microsoft Windows is asked to display (whether it must unhide or
activate) a window, it must use its location (measure from left and top) and size (width and
height). It must give it the Active Window color and it must restore its other active colors. To
do this, the operating system must paint the window. When doing this, a message called
WM_PAINT is sent. The syntax of this message is:

OnPaint(HWND hWnd, WM_PAINT, WPARAM wParam, LPARAM lParam);

36

The only thing Windows needs to know is the window that needs to be painted or repainted,
which is specified as the hWnd value.

//--

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM lParam)
{
 switch(Msg)
 {
 case WM_CREATE:

MessageBox(NULL, "The window is being created", WindowCaption,
MB_OK);

break;
 case WM_SHOWWINDOW:

break;
 case WM_ACTIVATE:

break;
 case WM_PAINT:

break;
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//--

Window Sizing

WM_SIZE: When using an application, one of the actions a user may perform is to change its
size. Whenever the size of a window has changed, the window receives the WM_SIZE
message. Its syntax is:

OnSize(HWND hWnd, WM_SIZE, WPARAM wParam, LPARAM lParam);

hWnd is the window that was resized.

wParam determines how the sizing action should be performed. It can be one of the following
values

Value Description
SIZE_MAXHIDE Sent to this window if it was maximized from being previously hidden
SIZE_MAXIMIZED Sent to this window if it was maximized
SIZE_MAXSHOW Sent if the window was restored
SIZE_MINIMIZED Sent if the window was minimized
SIZE_RESTORED Sent if the window was resized, but neither the SIZE_MINIMIZED nor

SIZE_MAXIMIZED value applies

lParam specifies the dimensions of the window (the width and the height

37

//--

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM lParam)
{
 switch(Msg)
 {
 case WM_CREATE:

break;
 case WM_SHOWWINDOW:

break;
 case WM_ACTIVATE:

break;
 case WM_PAINT:

break;
 case WM_SIZE:

break;
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//--

WM_SIZING: This message is sent to a window that is being resized with the above
WM_SIZE message. Its syntax is:

OnSizing(HWND hWnd, WM_SIZING, WPARAM wParam, LPARAM lParam);

hWnd is the window that is being resized.

To resize a window, the user usually grabs one of the four corners or one of the four borders.
The lParam parameter specifies what border or corner the user is moving. It can be one of the
following values:

Value Border or Corner
WMSZ_BOTTOM Bottom edge
WMSZ_BOTTOMLEFT Bottom-left corner
WMSZ_BOTTOMRIGHT Bottom-right corner
WMSZ_LEFT Left edge
WMSZ_RIGHT Right edge
WMSZ_TOP Top edge
WMSZ_TOPLEFT Top-left corner
WMSZ_TOPRIGHT Top-right corner

38

lParam is actually the rectangular dimensions of the window that is being resized. It is a RECT
object.

Window Moving

WM_MOVE: When a window has been moved, the operating system needs to update its
location. Therefore, the window sends a message called WM_MOVE. Its syntax is:

OnMove(HWND hWnd, WM_MOVE, WPARAM wParam, LPARAM lParam);

hWnd is the window that needs to be moved. The wParam and lParam values are not used.

WN_DESTROY: Once the window has been used and the user has closed it, the window must
send a message to the operating system to destroy it and reclaim the memory space it was
using. The message is called WN_DESTROY and its syntax is:

OnDestroy(HWND hWnd, WN_DESTROY, WPARAM wParam, LPARAM lParam);

hWnd is the window that needs to be destroyed. The wParam and lParam values are not used.

Window Destruction

WM_DESTROY: Once the window has been used and the user has closed it, the window must
send a message to the operating system to destroy it. The message sent is called
WN_DESTROY and its syntax is:

OnDestroy(HWND hwnd, WM_DESTROY, WPARAM wParam, LPARAM lParam);

39

hWWnd is the window that is being destroyed. The wParam and lParam values are not used.

Anytime Messages

Introduction

The messages we have used so far belong to specific events generated at a particular
time by a window. Sometimes in the middle of doing something, you may want to
send a message regardless of what is going on. This is made possible by a function
called SendMessage(). The syntax of the SendMessage() function is as follows:

LRESULT SendMessage(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM lParam);

The hWnd argument is the object or control that is sending the message.
The Msg argument is the message to be sent.
The wParam and the lParam values depend on the message that is being sent.

Sending Messages

The advantage of using the SendMessage() function is that, when sending this
message, it would target the procedure that can perform the task and this function
would return only after its message has been processed. Because this (member)
function can sometimes universally be used, that is by any control or object, the
application cannot predict the type of message that SendMessage() is carrying.
Therefore, (the probable disadvantage is that) you must know the (name or identity of
the) message you are sending and you must provide accurate accompanying items
(like sending a letter with the right stamp; imagine you send a sexy letter to your
grand-mother in Australia about her already dead grand grand-father who is
celebrating his first job while he has just become 5 years old).

In order to send a message using the SendMessage() function, you must know what
message you are sending and what that message needs in order to be complete. For
example, to change the caption of a window at any time, you can use the
WM_SETTEXT message. The syntax to use would be:

SendMessage(hWnd, WM_SETTEXT, wParam, lParam);

Obviously you would need to provide the text for the caption you are trying to change.
This string is carried by the lParam argument as a null-terminated string. For this
message, the wParam is ignored.

const char *Msg = "This message was sent";
SendMessage(hWnd, WM_SETTEXT, 0, (LPARAM)(LPCTSTR)Msg);

Object-Oriented Win32

40

Window Objects
Introduction

Every object you see on your screen that can be located, can be clicked, or moved, is called a
window. As you may imagine, these window objects can be as different as the human eye can
distinguished them. Some of these objects are icons, buttons, pictures, menu items, etc. As
different as they are, there are also various ways of creating them.

There are three main ways you create a window, as we will learn throughout this site. One of
the techniques you can use consists of creating a script in a resource file, as we have
introduced scripts in lessons 1 and 2. Another technique you can use consists of calling one of
the Win32 functions such as CreateWindow() or CreateWindowEx() to create a window;
we have introduced it when creating the main window in all previous applications. The last
option you have is to use your own class and customize the creation of a window.

OOP Win32 Fundamentals

In C++, you probably learned that it is a good idea to make sure that the main() function be
not crowded, which can make your program easier to read and troubleshoot when problems
happen. You can also apply this to Win32 programming by separating tasks in their own units.
Based on this, you can define functions that perform specific tasks such as creating or
registering the window

To apply object oriented programming (OOP) to a Win32 application, you can create a class for
each window you use in your application. Since each object is primarily a window, you can start
with a general window that lays a foundation for other windows. Such a class can be created as
follows (this is a primary window class; we will add methods to it as needed:

#ifndef WINCTRLS_H
#define WINCTRLS_H

#include <windows.h>

//---
class WControl
{
public:

WControl();
virtual ~WControl();

HWND Create(HINSTANCE hinst, LPCTSTR clsname,
 LPCTSTR wndname, HWND parent = NULL,

 DWORD dStyle = WS_OVERLAPPEDWINDOW,
 int x = CW_USEDEFAULT, int y = CW_USEDEFAULT,
 int width = 450, int height = 380);

BOOL Show(int dCmdShow = SW_SHOWNORMAL);
operator HWND();

protected:
HWND hwnd;
HINSTANCE mhInst;

public:
HINSTANCE GetInstance();

41

private:
};
//---

#endif // WINCTRLS_H

This class can be implemented as follows:

#include "winctrl.h"

//---
WControl::WControl()

: hwnd(0)
{
}
//---
WControl::~WControl()
{
}
//---
WControl::operator HWND()
{

return hwnd;
}
//---
HWND WControl::Create(HINSTANCE hinst, LPCTSTR clsname,

 LPCTSTR wndname, HWND parent,
 DWORD dStyle,
 int x, int y,
 int width, int height)

{
hwnd = CreateWindow(clsname, wndname, dStyle,

x, y, width, height, parent, NULL, hinst, NULL);

return hwnd;
}
//---
BOOL WControl::Show(int dCmdShow)
{

BOOL CanShow = ::ShowWindow(hwnd, dCmdShow);

if(CanShow)
return TRUE;

return FALSE;
}
//---
HINSTANCE WControl::GetInstance()
{

return mhInst;
}
//---

To use this class, simply declare it in your application and call the necessary methods. Here is an
example:

#include <windows.h>
#include "winctrl.h"

42

//---
HINSTANCE hInst;
const char *ClsName = "BasicApp";
const char *WndName = "A Simple Window";
//---
ATOM RegWnd(HINSTANCE hInst);
LRESULT CALLBACK WndProcedure(HWND hWnd, UINT uMsg,

 WPARAM wParam, LPARAM lParam);
//---
INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{

// The message class of the application
MSG Msg;

// Initialize the instance of this application
hInst = hInstance;
// create and register the application
RegWnd(hInstance);
// Create the window object
WControl Ctrl;

Ctrl.Create(hInst, ClsName, WndName);
Ctrl.Show();

// Process the messages
while(GetMessage(&Msg, NULL, 0, 0))
{

 TranslateMessage(&Msg);
 DispatchMessage(&Msg);

}

return Msg.wParam;
}
//---
ATOM RegWnd(HINSTANCE hInst)
{

WNDCLASSEX WndClsEx;

// Create the application window
WndClsEx.cbSize = sizeof(WNDCLASSEX);
WndClsEx.style = CS_HREDRAW | CS_VREDRAW;
WndClsEx.lpfnWndProc = WndProcedure;
WndClsEx.cbClsExtra = 0;
WndClsEx.cbWndExtra = 0;
WndClsEx.hIcon = LoadIcon(NULL, IDI_APPLICATION);
WndClsEx.hCursor = LoadCursor(NULL, IDC_ARROW);
WndClsEx.hbrBackground = static_cast<HBRUSH>(GetStockObject(WHITE_BRUSH));
WndClsEx.lpszMenuName = NULL;
WndClsEx.lpszClassName = ClsName;
WndClsEx.hInstance = hInst;
WndClsEx.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

// Register the application
return RegisterClassEx(&WndClsEx);

}

43

//---
LRESULT CALLBACK WndProcedure(HWND hWnd, UINT Msg,

 WPARAM wParam, LPARAM lParam)
{
 switch(Msg)
 {

case WM_CREATE:
break;

 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;

 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }

 return 0;
}
//---

Win32 Object Programming

The Application

In order to create an application, you must first create an application (sorry for the repetition).
As we have seen so far, an application is created using the WNDCLASS or the WNDCLASSEX
structures. Therefore, you can start with a class that would hold a member variable of this
type. As some members of these structures are usually the same for most basic applications,
you can create a class that uses default values and can then be easily initialized when it is time
to create an application.

Practical Learning: Initializing an Application

1. Start your programming environment

2. Create a Win32 project (If you are using Visual C++, create the project as empty) named
Win32OOP1
If you are using C++ Builder, save the unit as Exercise
If you are using Visual C++, create a source file and name it Exercise

3. Create a header file. Save it as WinApp and type the following in it:

44

4.

#pragma once
#include <windows.h>

//---

class WApplication
{
public:

// This constructor will initialize the application
WApplication(HINSTANCE hInst, char *ClasName,

 WNDPROC WndPrc, LPCTSTR MenuName = NULL);

// Class Registration
void Register();

protected:
// Global variable that holds the application
WNDCLASSEX _WndClsEx;

};
//---
-------- Create a

source file. Save it as WinApp and type the following in it:

5.
#include "WinApp.h"

//---
WApplication::WApplication(HINSTANCE hInst, char *ClsName,

 WNDPROC WndPrc, LPCTSTR MenuName)
{

// Initializing the application using the application member variable
_WndClsEx.cbSize = sizeof(WNDCLASSEX);
_WndClsEx.style = CS_VREDRAW | CS_HREDRAW | CS_DBLCLKS;
_WndClsEx.lpfnWndProc = WndPrc;
_WndClsEx.cbClsExtra = 0;
_WndClsEx.cbWndExtra = 0;
_WndClsEx.hInstance = hInst;
_WndClsEx.hIcon = LoadIcon(NULL, IDI_APPLICATION);
_WndClsEx.hCursor = LoadCursor(NULL, IDC_ARROW);
_WndClsEx.hbrBackground = static_cast<HBRUSH>(GetStockObject(WHITE_BRUSH));
_WndClsEx.lpszMenuName = MenuName;
_WndClsEx.lpszClassName = ClsName;
_WndClsEx.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

}
//---
void WApplication::Register()
{

RegisterClassEx(&_WndClsEx);
}
//---

Save all

The Window

As we have done in previous lessons, after initializing the application, you can create a window,

45

or the main window. This is done by calling either the CreateWindow() or the
CreateWindowEx() functions. After creating the main window, you can display it, then
process its messages.

Practical Learning: Creating a Window

1. Create a header file. Save it as MainWnd and type the following in it:

2.

#pragma once
#include <windows.h>

//---

class WWindow
{
public:

// We will use a default constructor to declare a window
WWindow();
// The Create() method wil be used to initialize a window
HWND Create(HINSTANCE hinst,

 LPCTSTR clsname,
 LPCTSTR wndname,

 HWND parent = NULL,
 DWORD dStyle = WS_OVERLAPPEDWINDOW,
 DWORD dXStyle = 0L,

 int x = CW_USEDEFAULT,
 int y = CW_USEDEFAULT,

 int width = CW_USEDEFAULT,
 int height = CW_USEDEFAULT);

// This method will be used to display the window
BOOL Show(int dCmdShow = SW_SHOWNORMAL);

// Because each window is of type HWND, we will need a way
// to recognize the window handle when used in our application
operator HWND();

protected:
// This will be a global handle available to
// this and other windows
HWND _hwnd;

};
//---

Create a source file. Save it as MainWnd and type the following in it:

3.

46

#include "MainWnd.h"

//---
WWindow::WWindow()
{

// If we declare a window class with a default constructor,
// we need to reset the window to a nothing
_hwnd = NULL;

}
//---
HWND WWindow::Create(HINSTANCE hinst,
 LPCTSTR clsname,

 LPCTSTR wndname,
 HWND parent,

 DWORD dStyle,
 DWORD dXStyle,

 int x,
 int y,

 int width,
 int height)

{
// When call the Create() method, we can use it to create a new window
_hwnd = CreateWindowEx(dXStyle, clsname, wndname, dStyle, x, y, width,

 height, parent, NULL, hinst, NULL);

// We hope everything went alright and the window was created
if(_hwnd != NULL)

return _hwnd;
// If something went wrong, for example if the window could not
// be created, return a "nothing" window
return NULL;

}
//---
BOOL WWindow::Show(int dCmdShow)
{

// We will display the main window as a regular object and update it
if(ShowWindow(_hwnd, dCmdShow) && UpdateWindow(_hwnd))

return TRUE;
return FALSE;

}
//---
WWindow::operator HWND()
{

// This overloaded operator allows us to use HWND anyway we want
return _hwnd;

}
//---

Save all

Main Application Creation

There are some steps that you should/must follow to create an application. You start by
initializing an application object, then create a window, display it, and process its messages.
We have mentioned that the messages of an application are treated in a function pointer
referred to as callback. Since C++ doesn't like or doesn't encourage function pointers to be
members of a class (some libraries such as Borland VCL implemented in C++ Builder solve this

47

problem another way; the Microsoft .NET Framework also solves this problem somehow), the
function should be created globally and passed to WNDCLASS or WNDCLASSEX.

Practical Learning: Creating an Application

1. Open the Exercise.cpp source file and type the following in it (if using C++ Builder, make
only the changes):

48

2.

#include <windows.h>
#include "WinApp.h"
#include "MainWnd.h"

//---

LRESULT CALLBACK MainWndProc(HWND hWnd, UINT Msg,
 WPARAM wParam, LPARAM lParam);
//---

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInst,

 LPSTR lpCmdLine, int nCmdShow)
{

MSG Msg;
char *ClsName = "Win32OOP";
char *WndName = "Object-Oriented Win32 Programming";

// Initialize the application class
WApplication WinApp(hInstance, ClsName, MainWndProc);
WinApp.Register();

// Create the main window
WWindow Wnd;
Wnd.Create(hInstance, ClsName, WndName);
// Display the main winow
Wnd.Show();

// Process the main window's messages
while(GetMessage(&Msg, NULL, 0, 0))
{

TranslateMessage(&Msg);
DispatchMessage(&Msg);

}

return 0;
}
//---

LRESULT CALLBACK MainWndProc(HWND hWnd, UINT Msg,
 WPARAM wParam, LPARAM lParam)
{

switch(Msg)
{
case WM_DESTROY:

PostQuitMessage(WM_QUIT);
return 0;

}

return DefWindowProc(hWnd, Msg, wParam, lParam);
}
//---

Execute the application

49

3. Return to your programming environment

Anatomy of a Window

The Presence of a Window

For the user to use an application, it must display the window that can be located on the
screen. A window is primarily distinguishable from the rest of the screen by its being
surrounded by borders. To create a window that has borders, add the WS_BORDER flag to the
dwStyle of the CreateWindow() or the CreateWindowEx() functions. Here is an example:

CreateWindow("AnatWnd",
 "Anatomy of a Window",
 WS_BORDER,
 CW_USEDEFAULT,

 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,

 NULL,
 NULL,

 hInstance,
 NULL);

This would produce:

50

The Title Bar: The Window Icon

When a window comes up, it may start on top with a long bar called the title bar. If you want a
window to be equipped with a title bar, add the WS_CAPTION flag to the dwStyle of the
CreateWindow() or the CreateWindowEx() functions.

The title bar itself is divided in three sections. On the left side, there may be a small picture we
call an icon and it is primarily managed as a Windows resource, through a name. To display this
icon, the window must be created with the WS_SYSMENU flag to its list of styles. Here is an
example:

CreateWindow("AnatWnd",
 "Anatomy of a Window",
 WS_BORDER | WS_CAPTION | WS_SYSMENU,
 CW_USEDEFAULT,

 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,

 NULL,
 NULL,

 hInstance,
 NULL);

This would produce:

51

By default, the operating system provides a simple icon named IDI_APPLICATION. To use it,
you pass it to the LoadIcon() function with the hInstance argument set to NULL. Instead of
LoadIcon(), Microsoft suggests you use the LoadImage() function. Its syntax is:

HANDLE LoadImage(HINSTANCE hinst,
 LPCTSTR lpszName,
 UINT uType,
 int cxDesired,
 int cyDesired,
 UINT fuLoad);

If you want to provide your own icon, first create it, preferably in two versions. The first version,
with a dimension of 32x32 pixels is used to represent an application in Large View of certain
windows such as My Documents or Windows Explorer. This version must be assigned to the
WNDCLASS::hIcon or the WNDCLASSEX::hIcon member variable.

A second version of the same icon has a dimension of 16x16 pixels. It is used on the top-left
corner of a window. It is also used all but the Large View or Windows Explorer or My Documents
windows. This version is passed as the WNDCLASSEX::hIconSm member variable. Here is an
example:

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{

MSG Msg;
HWND hWnd;
WNDCLASSEX WndClsEx;

// Create the application window
WndClsEx.cbSize = sizeof(WNDCLASSEX);
WndClsEx.style = CS_HREDRAW | CS_VREDRAW;
WndClsEx.lpfnWndProc = WndProcedure;
WndClsEx.cbClsExtra = 0;
WndClsEx.cbWndExtra = 0;
WndClsEx.hIcon = static_cast<HICON>(LoadImage(hInstance,

52

 MAKEINTRESOURCE(IDI_ANATWND),
 IMAGE_ICON,

32,
 32,

LR_DEFAULTSIZE));
WndClsEx.hCursor = LoadCursor(NULL, IDC_ARROW);
WndClsEx.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
WndClsEx.lpszMenuName = NULL;
WndClsEx.lpszClassName = ClsName;
WndClsEx.hInstance = hInstance;
WndClsEx.hIconSm = static_cast<HICON>(LoadImage(hInstance,

 MAKEINTRESOURCE(IDI_ANATWND),
 IMAGE_ICON,
 16,
 16,
 LR_DEFAULTSIZE));

// Register the application
RegisterClassEx(&WndClsEx);

. . .

return 0;
}

This would produce:

The Title Bar: The Window Menu

Besides representing the application or the window, the Window icon also holds a group of
actions called the Window Menu:

53

This menu allows the user to close, move, or perform other necessary operations. By default,
the items in this menu are Restore, Move, Size, Minimize, Maximize, and Close. These actions
are usually enough for a regular application. If for some reason you would like to modify this
menu, you can.

The items on the menu are stored in a zero-based array with the top-most item having an
index of 0, the second at 1, etc. Before taking any action on the menu, you should first open a
handle to the system menu. This can be done by calling the GetSystemMenu() function. Its
syntax is:

HMENU GetSystemMenu(HWND hWnd, BOOL bRevert);

To remove an item from the menu, you can call the RemoveMenu() function. Its syntax is:

BOOL RemoveMenu(HMENU hMenu, UINT uPosition, UINT uFlags);

Here is an example that removes the third menu item:

//---
LRESULT CALLBACK MainWndProc(HWND hWnd, UINT Msg,

 WPARAM wParam, LPARAM lParam)
{

HMENU hSysMenu;

switch(Msg)
{
case WM_CREATE:

hSysMenu = GetSystemMenu(hWnd, FALSE);
RemoveMenu(hSysMenu, 2, MF_BYPOSITION);

return 0;

case WM_DESTROY:
PostQuitMessage(WM_QUIT);
return 0;

}

return DefWindowProc(hWnd, Msg, wParam, lParam);
}
//---

54

This would produce:

To add an item to the menu, you can call the AppendMenu() function. Its syntax is:

BOOL AppendMenu(HMENU hMenu,
 UINT uFlags,
 UINT_PTR uIDNewItem,
 LPCTSTR lpNewItem);

To insert a new menu item inside of existing ones, you can call the InsertMenu() function.

The Window Name

On the right side of the window icon, there is a long section that serves two main purposes.
Like the system icon, the middle section of the title bar holds a menu. To access this menu, you
can right-click the title bar. The menu that appears is the same as set in the window icon. If the
menu of the window icon has been previously modified, it would appear as such when the title
bar is right-clicked.

Another task of the main section of the title bar is to display the name of the window. As far as
Windows and the user are concerned, the word or the group of words that appears in the
middle of the title bar is the name of the window. In the programming world, this word or
group of words is also referred to as the caption.

When you are a window using the CreateWindow() or the CreateWindowEx() functions,
you can specify the caption by passing a string to the lpWindowName argument. To do this,
you can provide a null-terminated string to the argument or declare a global string. Here is an
example:

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)

{
WNDCLASSEX WndClsEx;

. . .

 RegisterClassEx(&WndClsEx);

 CreateWindow(ClsName, WndName,
}

55

After the main window of the application has been created, you can change its caption easily
and there are at least two main ways you can do this. To change the caption of a window, you
can call the SetWindowText() function. Its syntax is:

BOOL SetWindowText(HWND hWnd, LPCTSTR lpString);

Here is an example:

//---
LRESULT CALLBACK MainWndProc(HWND hWnd, UINT Msg,

 WPARAM wParam, LPARAM lParam)
{

switch(Msg)
{
case WM_CREATE:

SetWindowText(hWnd, "FunctionX Tutorials");

return 0;

case WM_DESTROY:
PostQuitMessage(WM_QUIT);
return 0;

}

return DefWindowProc(hWnd, Msg, wParam, lParam);
}
//---

Alternatively, you can send the WM_SETTEXT message using the SendMessage() function.
With this message, the wParam parameter is not used. The lParam argument is a string that
holds the caption.

To retrieve the current caption of the window, you can call the GetWindowText() function. Its
syntax is:

int GetWindowText(HWND hWnd, LPTSTR lpString, int nMaxCount);

To perform the same operation, you can send the WM_GETTEXT message.

The System Menu

On the right side of the title bar, a window can display one to three buttons: Minimize or

, Maximize or , Close or . The presence or absence of these buttons can be
managed from various alternatives. Although they appear as buttons, they are not resources.
In some cases, only the Close button displays. In some other cases, the buttons would appear
in a combination of three. In this case, all of the buttons might be usable or one of the buttons
might be disabled. To start, if you want a window to have any of these buttons, add the
WS_SYSMENU flag to the dwStyle of the CreateWindow() or the CreateWindowEx()
functions.

56

The Minimize Button

The Minimize button appears as or . The Minimize button cannot appear on its own, only
with the Maximize and the Close buttons. To display the Minimize button, when creating the
window, add the WS_MINIMIZEBOX flag to the dwStyle of the CreateWindow() or the
CreateWindowEx() functions. Here is an example:

CreateWindow("AnatWnd",
 "Anatomy of a Window",
 WS_BORDER | WS_CAPTION | WS_SYSMENU | WS_MINIMIZEBOX,
 CW_USEDEFAULT,

 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,

 NULL,
 NULL,

 hInstance,
 NULL);

This would produce:

As seen on the above picture, when you add only the WS_MINIMIZEBOX style, a Minimize
button appears with a disabled Maximize button. If the user clicks a Minimize button, the
window disappears from the screen and becomes represented by a button on the taskbar. The
button that represents a window on the taskbar also displays its application icon and its
window name.

To minimize a window, the user can click its Minimize button, to programmatically minimize a
window, you can call the ShowWindow() function. Its syntax is:

BOOL ShowWindow(HWND hWnd, int nCmdShow);

The first argument specifies the window on which you are taking the action. If you are
minimizing the window, the second argument can have a value of SW_MINIMIZE. Here is an

57

example:

LRESULT CALLBACK WndProcedure(HWND hWnd, UINT Msg,
 WPARAM wParam, LPARAM lParam)

{
 switch(Msg)
 {
 case WM_LBUTTONDOWN:

ShowWindow(hWnd, SW_MINIMIZE);
break;

 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 }

// Process the left-over messages
return DefWindowProc(hWnd, Msg, wParam, lParam);

}

At anytime, to find out whether a window is minimized, you can call the IsIconic() function.
Its syntax is:

BOOL IsIconic(HWND hWnd);

The argument of this function is the window whose minimized state you are checking.

The Maximize Button

The Maximize button appears as or . Like Minimize, the Maximize button cannot appear
on its own, only with the Minimize and the Close buttons. To display the Maximize button, when
creating the window, add the WS_MAXIMIZEBOX flag to the dwStyle of the
CreateWindow() or the CreateWindowEx() functions. Here is an example:

CreateWindow("AnatWnd",
 "Anatomy of a Window",
 WS_BORDER | WS_CAPTION | WS_SYSMENU | WS_MAXIMIZEBOX,
 CW_USEDEFAULT,

 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,

 NULL,
 NULL,

 hInstance,
 NULL);

This would produce:

58

If you add only the WS_MAXIMIZEBOX flag without WS_MINIMIZEBOX, a Maximize button
appears with a disabled Minimize button. If the user clicks the Maximize button, the size of the
window increases to occupy the whole screen. At this time, the window is described as being
maximized. When a window is maximized, the Maximize button changes into a Restore button

. If the user clicks the Restore button, the window comes back to the size it had the last
time it was not maximized (most of this information may be stored in the Registry by the
operating system; this means that the Registry can "remember" the location, dimensions, and
maximized state even if it occurred days or months before).

While the user can maximize a window by clicking the Maximize button, to programmatically
maximize a window, you can call the ShowWindow() function, passing the second argument
as SW_MAXIMIZE. Here is an example:

LRESULT CALLBACK WndProcedure(HWND hWnd, UINT Msg,
 WPARAM wParam, LPARAM lParam)

{
 switch(Msg)
 {
 case WM_LBUTTONDOWN:

ShowWindow(hWnd, SW_MAXIMIZE);
break;

 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 }

// Process the left-over messages
return DefWindowProc(hWnd, Msg, wParam, lParam);

}

At anytime, to find out whether a window is maximized, you can call the IsZoomed() function.
Its syntax is:

59

BOOL IsZoomed(HWND hWnd);

The argument of this function is the window whose maximized state you are checking.

Types of Windows

The Window's Real Estate
Application's Instance

A window is referred to as parent when it can be used to host, hold, or carry other windows.
For examples, when the computer starts, it draws its main screen, also called the desktop,
which occupies the widest area that the monitor screen can offer. This primary window
becomes the host of all other window that will display as long as the computer is own. This
desktop is also a complete window in its own right. As mentioned already, to get its handle,
you can call the GetDesktopWindow() function.

After the desktop has been created, a window of yours can display if the user starts your
application. This means that an application must have been created for the user to use it.
When the user opens an application, we also say that the application has been instantiated or
an instance of the application has been created. Based on this, any time you create an
application, you must provide an instance of it. This allows the operating system to manage
your application with regards to its interaction with the user and also its relationship with other
resources. Therefore, you must always create an instance for your application. This is taken
care of by the first argument of the WinMain() function.

If an application has already been created, to get its instance, you can call the
GetWindowLong() function. Its syntax is:

LONG GetWindowLong(HWND hWnd, int nIndex);

Although this function is used for many other reasons, it can also help you get the instance of
an application. To do this, pass the first argument as the handle to a window of the application
you are examining and pass the second argument as GWL_HINSTANCE.

Window Parenting

60

There are two types of windows or object you will deal with in your applications. The type
referred to here is defined by the relationship a window has with regards to other windows that
are part of an application:

• Parent: a window is referred to as a parent when there are, or there can be, other
windows that depend on it. For example, the toolbar of your browser is equipped with
some buttons. The toolbar is a parent to the buttons. When a parent is created, it "gives
life" to other windows that can depend on it.

• Child: A window is referred to as child when its existence and especially its visibility
depend on another window called its parent.

When a parent is created, made active, or made visible, it gives existence and visibility to its
children. When a parent gets hidden, it also hides its children. If a parent moves, it moves with
its children. The children keep their positions and dimensions inside the parent. When a parent
is destroyed, it also destroys its children (sometimes it does not happen so smoothly; a parent
may make a child unavailable but the memory space the child was occupying after the parent
has been destroyed may still be in use, sometimes filled with garbage, but such memory may
not be available to other applications until you explicitly recover it).

Child controls depend on a parent because the parent "carries", "holds", or hosts them. All of
the Windows controls you will use in your applications are child controls. A child window can
also be a parent of another control. For example, a toolbar of the browser is the parent of the
buttons on it. If you close or hide the toolbar, its children disappear. At the same time, the
toolbar is a child of the application's frame. If you close the application, the toolbar disappears,
along with its own children. In this example, the toolbar is a child of the frame but is a parent
to its buttons.

After initializing an application with either the WNDCLASS, or the WNDCLASSEX structure
and registering it, as we have done so far, you must create the primary parent of all objects of
your class. This is usually done with either the CreateWindow() or the CreateWindowEx()
function. Here is an example:

HWND hWndParent;

// Create the parent window
hWndParent = CreateWindowEx(0, ClassName, StrWndName,

 WS_OVERLAPPEDWINDOW,
 0, 100, 140, 320,
 NULL, NULL, hInstance, NULL);

A Window's Childhood

After creating the main window, you can use it as a parent for other windows. To specify that a
window is a child of another window, when creating it with either the CreateWindow() or the
CreateWindowEx() function, pass the handle of the parent as the hWndParent argument.
Here is an example:

// Create a window
CreateWindowEx(0, WndClassName, CaptionOrText,
 ChildStyle, Left, Top, Width, Height,
 hWndParent, NULL, hInstance, NULL);

61

If a window is a child of another window, to get a handle to its parent, you can call the
GetParent() function. Its syntax is:

HWND GetParent(HWND hWnd);

The hWnd argument is a handle to the child window whose parent you want to find out.
Alternatively, you can also use the GetWindowLong() function, passing the second argument
as GWL_HWNDPARENT, to get a handle to the parent of a window.

The Borders of a Window

To distinguish a particular window from the other objects on a screen, a window can be defined
by surrounding borders on the left, the top, the right, and the bottom. One of the effects the
user may want to control on a window is its size. For example, the user may want to narrow,
enlarge, shrink, or heighten a window. To do this, a user would position the mouse on one of
the borders, click and drag in the desired direction. This action is referred to as resizing a
window. For the user to be able to change the size of a window, the window must have a
special type of border referred to as a thick frame. To provide this border, apply or add the
WS_THICKFRAME style:

CreateWindow(ClsName, WndName,
 WS_VISIBLE | WS_SYSMENU | WS_MINIMIZEBOX | WS_MAXIMIZEBOX | WS_THICKFRAME);

Because many windows will need this functionality, a special style can combine them and it is
called WS_OVERLAPPEDWINDOW. Therefore, you can create a resizable window as follows:

CreateWindow(ClsName, WndName, WS_OVERLAPPEDWINDOW,

Window's Location and Size

The location of a window is defined by the distance from the left border of the monitor to the
window's left border and its distance from the top border of the monitor to its own top border.
The size of a window is its width and its height. These can be illustrated for a main window
frame as follows:

62

For a Win32 application, the original distance from the left border of the monitor is passed as
the x argument to the CreateWindow() or the CreateWindowEx() function. The distance
from top is specified using the y argument. The x and y arguments define the location of the
window. The distance from the left border of the monitor to the right border of the window is
specified as the nWidth argument. The distance from the top border of the monitor to the lower
border of the window is specified with the nHeight value.

If you cannot make up your mind for these four values, you can use the CW_USEDEFAULT
(when-Creating-the-Window-USE-the-DEFAULT-value) constant for either one or all four
arguments. In such a case, the compiler would select a value for the argument. Here is an
example:

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{

WNDCLASSEX WndClsEx;

. . .

RegisterClassEx(&WndClsEx);

HWND hWnd = CreateWindow(ClsName,
 WndName,
 WS_OVERLAPPEDWINDOW,

63

 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,

return 0;
}

Displaying the Window

Once a window has been created and if this was done successfully, you can display it to the
user. This is done by calling the ShowWindow() function. Its syntax is:

BOOL ShowWindow(HWND hWnd, int nCmdShow);

The hWnd argument is a handle to the window that you want to display. It could be the window
returned by the CreateWindow() or the CreateWindowEx() function.

The nCmdShow specifies how the window must be displayed. Its possible values are:

 Value Description
 SW_SHOW Displays a window and makes it visible

SW_SHOWNORMAL Displays the window in its regular size. In most
circumstances, the operating system keeps track of the
last location and size a window such as Internet Explorer
or My Computer had the last time it was displaying. This
value allows the OS to restore it.

 SW_SHOWMINIMIZED Opens the window in its minimized state, representing it
as a button on the taskbar

 SW_SHOWMAXIMIZED Opens the window in its maximized state

SW_SHOWMINNOACTIVE Opens the window but displays only its icon. It does not

make it active
 SW_SHOWNA As previous

 SW_SHOWNOACTIVATE Retrieves the window's previous size and location and
displays it accordingly

 SW_HIDE Used to hide a window

SW_MINIMIZE Shrinks the window and reduces it to a button on the

taskbar
SW_MAXIMIZE Maximizes the window to occupy the whole screen area

 SW_RESTORE If the window was minimized or maximized, it would be
restored to its previous location and size To

show its presence on the screen, the window must be painted. This can be done by calling the
UpdateWindow() function. Its syntax is:

BOOL UpdateWindow(HWND hWnd);

This function simply wants to know what window needs to be painted. This window is specified
by its handle. Here is an example:

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)

64

{
WNDCLASSEX WndClsEx;

. . .

RegisterClassEx(&WndClsEx);

HWND hWnd = CreateWindow(ClsName, WndName, WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL);

if(!hWnd) // If the window was not created,
return 0; // stop the application

ShowWindow(hWnd, SW_SHOWNORMAL);
UpdateWindow(hWnd);

return 0;
}

The Multiple Document Interface (MDI)

Introduction

A multiple document is the type of application that uses a main, external window that acts as a
frame and hosts other, floating window that act as its children. This concept allows the user to
open more than one document at a time in an application, making it possible to switch from
one document to another without closing the application.

MDI Application Creation

You start an MDI like the types of applications we have created so far. One of the primary
differences is that the window procedure must return the DefFrameProc() function. Its syntax
is:

LRESULT DefFrameProc(HWND hWnd,
 HWND hWndMDIClient,
 UINT uMsg,
 WPARAM wParam,
 LPARAM lParam);

The Graphical Device Interface
Introduction to the GDI
The Device Context

65

Imagine you want to draw an orange. You can pick up a piece of stone and start drawing
somewhere. If you draw on the floor, the next rain is likely to wipe your master piece away. If
you draw on somebody's wall, you could face a law suit. Nevertheless, you realize that, to
draw, you need at least two things besides your hands and your imagination: a platform to
draw on and a tool to draw with.

As it happens, drawing in a studio and drawing on the computer have differences. To draw in
real life, the most common platform is probably a piece of paper. Then, you need a pen that
would show the evolution of your work. Since a pen can have or use only one color, depending
on your goal, one pen may not be sufficient, in which case you would end up with quite a few
of them. Since the human hand sometimes is not very stable, if you want to draw straight line,
you may need a ruler. Some other tools can also help you draw geometric figures faster.

A device context is everything under one name. It is an orchestra, an ensemble of what need
in order to draw. It includes the platform you draw on, the dimensioning of the platform, the
orientation and other variations of your drawing, the tools you need to draw on the platform,
the colors, and various other accessories that can complete your imagination.

When using a computer, you certainly cannot position tools on the table or desktop for use as
needed. To help with drawing on the Windows operating system, Microsoft created the
Graphical Device Interface, abbreviated as GDI. It is a set of classes, functions, variables, and
constants that group all or most of everything you need to draw on an application. The GDI is
provided as a library called Gdi.dll and is already installed on your computer.

Grabbing the Device Context

As mentioned already, in order to draw, you need at least two things: a platform and a tool.
The platform allows you to know what type of object you are drawing on and how you can draw
on it. On a Windows application, you get this platform by creating a device context.

A device context is actually a whole class that provides the necessary drawing tools to perform
the job. For example, it provides functions for selecting the tool to use when drawing. It also
provides functions to draw text, lines, shapes etc.

HDC: This is the most fundamental class to draw in your applications. It provides all of the
primary functions used to perform the basic drawing steps. In order to use this class, first
declare a variable from it. Then call the BeginPaint() function to initialize the variable using
the PAINSTRUCT class. Once the variable has been initialized, you can use it to draw. After
using the device context call the EndPaint() function to terminate the drawing.

The Process of Drawing

Getting a Device Context

In order to draw using a device context, you must first declare an HDC variable. This can be
done as follows:

HDC hDC;

66

After declaring this variable, you must prepare the application to paint by initializing it with a
call to the BeginPaint() function. The syntax of the BeginPaint() function is:

HDC BeginPaint(HWND hWnd, LPPAINTSTRUCT lpPaint);

The hwnd argument is a handle to the window on which you will be painting

The lpPaint argument is a pointer to the PAINTSTRUCT structure. This means that, the
BeginPaint() function returns two values. It returns a device context as HDC and it returns
information about the painting job that was performed. That painting job is stored in a
PAINTSTRUCT value. The PAINTSTRUCT structure is defined as follows:

typedef struct tagPAINTSTRUCT {
 HDC hdc;
 BOOL fErase;
 RECT rcPaint;
 BOOL fRestore;
 BOOL fIncUpdate;
 BYTE rgbReserved[32];
} PAINTSTRUCT, *PPAINTSTRUCT;

After initializing the device context, you can call a drawing function or perform a series
of calls to draw. After painting, you must let the operating system know by calling the
EndPaint() function. Its syntax is:

BOOL EndPaint(HWND hWnd, CONST PAINTSTRUCT *lpPaint);

Painting with the BeginPaint() and EndPaint() functions must be performed in the
WM_PAINT message.

Starting a Device Context's Shape

To keep track of the various drawings, the device context uses a coordinate system
that has its origin (0, 0) on the top-left corner of the desktop:

Anything that is positioned on the screen is based on this origin. This coordinate
system can get the location of an object using a horizontal and a vertical
measurements. The horizontal measures are based on an x axis that moves from the
origin to the right right direction. The vertical measures use a y axis that moves from
the origin to the bottom direction:

67

This means that, if you start drawing something such as a line, it would start on the
origin and continue where you want it to stop.

GDI Fundamental Shapes

Line-Based Shapes
Introduction

As mentioned in the previous lesson, in order to display something in a graphical application,
you must draw that thing. The result of your drawing can be called a shape if it displays a
recognizable figure. Sometimes it will simply be referred to as a graphic. The fundamental and
easier shapes you can draw are geometric and they are the lines, rectangles, ellipse, etc. Of
course, there are more complicated or advanced shapes than that.

68

//---
#include <windows.h>

//---
HWND hWnd;
const char ClsName[] = "GDIFund";
const char WindowCaption[] = "GDI Fundamentals";
LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM lParam);
//---
INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 MSG Msg;
 WNDCLASSEX WndClsEx;

 WndClsEx.cbSize = sizeof(WNDCLASSEX);
 WndClsEx.style = CS_HREDRAW | CS_VREDRAW;
 WndClsEx.lpfnWndProc = WndProc;
 WndClsEx.cbClsExtra = NULL;
 WndClsEx.cbWndExtra = NULL;
 WndClsEx.hInstance = hInstance;
 WndClsEx.hIcon = LoadIcon(hInstance, IDI_APPLICATION);
 WndClsEx.hCursor = LoadCursor(NULL, IDC_ARROW);
 WndClsEx.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
 WndClsEx.lpszMenuName = NULL;
 WndClsEx.lpszClassName = ClsName;
 WndClsEx.hIconSm = LoadIcon(hInstance, IDI_APPLICATION);

 RegisterClassEx(&WndClsEx);

 hWnd = CreateWindowEx(WS_EX_OVERLAPPEDWINDOW,
 ClsName,
 WindowCaption,
 WS_OVERLAPPEDWINDOW,
 100,
 120,
 640,
 480,
 NULL,
 NULL,
 hInstance,
 NULL);

 ShowWindow(hWnd, nCmdShow);
 UpdateWindow(hWnd);

 while(GetMessage(&Msg, NULL, 0, 0))
 {
 TranslateMessage(&Msg);
 DispatchMessage(&Msg);
 }

 return 0;
}
//---
LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM lParam)
{
 switch(Msg)

69

Practical Learning: Introducing GDI Shapes

1. Start your programming environment and create a Win32 project or application. If you are using
Visual C++, create it as an empty project

2. Save it in a new folder named RainDrop1
If you are using C++ Builder 6 or Dev-C++, save the unit as Exercise and save the project as
RainDrop1
If you are using Visual C++ or C++BuilderX, create a new source file and name it Exercise

3. Create or add a new icon. Design it as follows:

4.

32 x 32 16 x 16

Set its ID to IDI_RAINDROP and save
it as raindrop.ico

5. Create or add a new cursor designed as follows:

6. Set its hot spot just at the tip of the left line

70

7. Save it as IDC_FREEHAND

8. Create or add a new 16 x 96 bitmap and design it as follows:

9. Set its ID to IDB_STANDARD and save it as standard.bmp

10.Create a menu as follows:

11.

Caption ID Prompt
&File
&New\tCtrl+N IDM_FILE_NEW Creates a new document\nNew
&Open...\tCtrl+O IDM_FILE_OPEN Opens an existing document\nOpen
&Save\tCtrl+S IDM_FILE_SAVE Saves the active document\nSave
Save &As... IDM_FILE_SAVEAS Custom saves the active document\nSave As
-
&Print...\tCtrl+P IDM_FILE_PRINT Prints the current document\nPrint
-
E&xit IDM_FILE_EXIT Closes the application\nExit
&Draw
&Arrow IDM_DRAW_ARROW No tool selected\nNo Tool
&Free Hand IDM_DRAW_FREEHAND Draws with a free hand\nFree Hand The

ID of the menu is IDR_MAIN_MENU

12.Save the resource file as RainDrop2.rc and add it to your project (it is automatically done in Visual
C++ .NET)

13.Create a header file named WinApp.h and type the following in it:

71

14.

#pragma once
#include <windows.h>

//---

class WApplication
{
public:

// This constructor will initialize the application
WApplication();
void Create(HINSTANCE hInst, char *ClasName,

 WNDPROC WndPrc, LPCTSTR MenuName = NULL);

// Class Registration
void Register();

protected:
// Global variable that holds the application
WNDCLASSEX _WndClsEx;

};
//---
-------- Create a

source file named WinApp.cpp and type the following in it:

15.

72

#include "WinApp.h"
#include "resource.h"

//---
WApplication::WApplication()
{
}

void WApplication::Create(HINSTANCE hInst, char *ClsName,
 WNDPROC WndPrc, LPCTSTR MenuName)

{
// Initializing the application using the application member variable
_WndClsEx.cbSize = sizeof(WNDCLASSEX);
_WndClsEx.style = CS_VREDRAW | CS_HREDRAW | CS_DBLCLKS;
_WndClsEx.lpfnWndProc = WndPrc;
_WndClsEx.cbClsExtra = 0;
_WndClsEx.cbWndExtra = 0;
_WndClsEx.hInstance = hInst;
_WndClsEx.hIcon = static_cast<HICON>(LoadImage(hInst,

 MAKEINTRESOURCE(IDI_RAINDROP),
 IMAGE_ICON,

32,
 32,

LR_DEFAULTSIZE));
_WndClsEx.hCursor = LoadCursor(NULL, IDC_ARROW);
_WndClsEx.hbrBackground = static_cast<HBRUSH>(GetStockObject(WHITE_BRUSH));
_WndClsEx.lpszMenuName = MAKEINTRESOURCE(IDR_MAIN_MENU);
_WndClsEx.lpszClassName = ClsName;
_WndClsEx.hIconSm = static_cast<HICON>(LoadImage(hInst,

 MAKEINTRESOURCE(IDI_RAINDROP),
 IMAGE_ICON,

16,
 16,

LR_DEFAULTSIZE));
}
//---
void WApplication::Register()
{

RegisterClassEx(&_WndClsEx);
}
//---

Create a header file named MainWnd.h and type the following in it:

73

16.

#pragma once
#include <windows.h>

//---

class WWindow
{
public:

// We will use a default constructor to declare a window
WWindow();
// The Create() method wil be used to initialize a window
HWND Create(HINSTANCE hinst,

 LPCTSTR clsname,
 LPCTSTR wndname,

 HWND parent = NULL,
 DWORD dStyle = WS_OVERLAPPEDWINDOW,
 DWORD dXStyle = 0L,

 int x = CW_USEDEFAULT,
 int y = CW_USEDEFAULT,

 int width = CW_USEDEFAULT,
 int height = CW_USEDEFAULT);

// This method will be used to display the window
BOOL Show(int dCmdShow = SW_SHOWNORMAL);

// Because each window is of type HWND, we will need a way
// to recognize the window handle when used in our application
operator HWND();

// Accessories
public:

void SetText(LPCTSTR strCaption);

protected:
// This will be a global handle available to
// this and other windows
HWND _hwnd;

};
//---
-------- Create a

source file named MainWnd.cpp and type the following in it:

74

17.

#include "MainWnd.h"

//---

WWindow::WWindow()
{

// If we declare a window class with a default constructor,
// we need to reset the window to a nothing
_hwnd = NULL;

}
//---

HWND WWindow::Create(HINSTANCE hinst,
 LPCTSTR clsname,

 LPCTSTR wndname,
 HWND parent,

 DWORD dStyle,
 DWORD dXStyle,

 int x,
 int y,

 int width,
 int height)

{
// When call the Create() method, we can use it to create a

new window
_hwnd = CreateWindowEx(dXStyle, clsname, wndname, dStyle, x,

y, width,
 height, parent, NULL, hinst, NULL);

// We hope everything went alright and the window was created
if(_hwnd != NULL)

return _hwnd;
// If something went wrong, for example if the window could

not
// be created, return a "nothing" window
return NULL;

}
//---

BOOL WWindow::Show(int dCmdShow)
{

// We will display the main window as a regular object and
update it

if(ShowWindow(_hwnd, dCmdShow) && UpdateWindow(_hwnd))
return TRUE;

return FALSE;
}
//---

WWindow::operator HWND()
{

// This overloaded operator allows us to use HWND anyway we
want

return _hwnd;
}
//---

Create a

75

Lines

A line is a junction of two points. This means that a line has a beginning and an end:

The beginning and the end are two distinct points . In real life, before drawing, you should
define where you would start. To help with this, you can use MoveToEx() function. Its syntax
is:

BOOL MoveToEx(HDC hdc, int X, int Y, LPPOINT lpPoint);

The origin of a drawing is specified as the (X, Y) point.

To end the line, you use the LineTo() function. Its syntax is:

BOOL LineTo(HDC hdc, int nXEnd, int nYEnd);

The end of a line can be defined by its horizontal (nXEnd) and its vertical measures (nYEnd).

Here is an example that draws a line starting at a point defined as (10, 22) coordinates and
ending at (155, 64):

//---

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam)
{
 HDC hDC;
 PAINTSTRUCT Ps;

 switch(Msg)
 {
 case WM_PAINT:

hDC = BeginPaint(hWnd, &Ps);
MoveToEx(hDC, 60, 20, NULL);
LineTo(hDC, 264, 122);
EndPaint(hWnd, &Ps);
break;

 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:

76

 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//---

We have mentioned that the MoveToEx() function is used to set the starting position of a line.
When using LineTo(), the line would start from the MoveToEx() point to the LineTo() end.
As long as you do not call MoveToEx(), any subsequent call to LineTo() would draw a line
from the previous LineTo() to the new LineTo() point. You can use this property of the
LineTo() function to draw various lines. Here is an example:

//---

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam)
{
 HDC hDC;
 PAINTSTRUCT Ps;

 switch(Msg)
 {
 case WM_PAINT:
 hDC = BeginPaint(hWnd, &Ps);
 MoveToEx(hDC, 60, 20, NULL);
 LineTo(hDC, 60, 122);
 LineTo(hDC, 264, 122);
 LineTo(hDC, 60, 20);
 EndPaint(hWnd, &Ps);
 break;
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//---

77

Practical Learning: Drawing a Line

1. Under the Arrow menu item of the Draw category, add a new menu item IDentified as IDM_DRAW_LINE
of &Line with a Prompt of Draws a straight line\nLine

2. Add a new bitmap to the right of the IDB_STANDARD resource as follows:

3. Save the bitmap

4. Design a new cursor as follows:

5. Set its hot spot to the intersection of the left cross

6. Set its ID to IDC_LINE and save it as line.cur

7. To be able to draw a line, change the Exercise.cpp source file as follows:

78

8.

//---

LRESULT CALLBACK MainWndProc(HWND hWnd, UINT Msg,
 WPARAM wParam, LPARAM lParam)
{

HDC hDC;
static BOOL IsDrawing = FALSE;
static int StartX, StartY;
static int EndX, EndY;
UINT iButtonState;

switch(Msg)
{
case WM_CREATE:

Exo.CreateStandardToolbar(hWnd, Exo.hInst);
SendMessage(Exo.hWndToolbar, TB_SETSTATE,

IDM_DRAW_ARROW, TBSTATE_CHECKED | TBSTATE_ENABLED);
return 0;

case WM_ACTIVATE:
Exo.Wnd.SetText("RainDrop - Untitled");
return 0;

case WM_LBUTTONDOWN:
// Find out if the Line button is clicked
iButtonState = SendMessage(Exo.hWndToolbar,

TB_GETSTATE, IDM_DRAW_LINE, 0);

// If the Line button is down, draw with it
if(iButtonState & TBSTATE_CHECKED)
{

hDC = GetDC(hWnd);
StartX = LOWORD(lParam);
StartY = HIWORD(lParam);

EndX = LOWORD(lParam);
EndY = HIWORD(lParam);

SetROP2(hDC, R2_XORPEN);

MoveToEx(hDC, StartX, StartY, NULL);
LineTo(hDC, EndX, EndY);
IsDrawing = TRUE;
ReleaseDC(hWnd, hDC);

}

return 0;

case WM_MOUSEMOVE:

hDC = GetDC(hWnd);
if(IsDrawing == TRUE)
{

SetROP2(hDC, R2_NOTXORPEN);

MoveToEx(hDC, StartX, StartY, NULL);
LineTo(hDC, EndX, EndY);

Execute the application and

79

Polylines

A polyline is a series of connected lines. The lines are stored in an array of POINT values. To
draw a polyline, you can use the Polyline() function. Its syntax is:

BOOL Polyline(HDC hdc, CONST POINT *lppt, int cPoints);

The lppt argument is an array of points that can be of POINT types. The cPoints argument
specifies the number of members of the array. When executing, the compiler moves the
starting point to lppt[0]. The first line is drawn from lppt[0] to lppt[1] as in:

//--

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM lParam)
{
 HDC hDC;
 PAINTSTRUCT Ps;
 POINT Pt[] = { 60, 20, 60, 122 };

 switch(Msg)
 {
 case WM_PAINT:
 hDC = BeginPaint(hWnd, &Ps);
 MoveToEx(hDC, Pt[0].x, Pt[0].y, NULL);
 LineTo(hDC, Pt[1].x, Pt[1].y);
 EndPaint(hWnd, &Ps);
 break;
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//--

To draw a polyline, you must have at least two points. If you define more than two points, each
line after the first would be drawn from the previous point to the next point until all points have
been included. Here is an example:

//---

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam)
{
 HDC hDC;
 PAINTSTRUCT Ps;
 POINT Pt[7];
 Pt[0].x = 20; Pt[0].y = 50;
 Pt[1].x = 180; Pt[1].y = 50;
 Pt[2].x = 180; Pt[2].y = 20;
 Pt[3].x = 230; Pt[3].y = 70;

80

 Pt[4].x = 180; Pt[4].y = 120;
 Pt[5].x = 180; Pt[5].y = 90;
 Pt[6].x = 20; Pt[6].y = 90;

 switch(Msg)
 {
 case WM_PAINT:
 hDC = BeginPaint(hWnd, &Ps);
 Polyline(hDC, Pt, 7);
 EndPaint(hWnd, &Ps);
 break;
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//---

Besides the Polyline() function, you can use the PolylineTo() function to draw a polyline. Its
syntax is:

BOOL PolylineTo(HDC hdc, CONST POINT *lppt, DWORD cCount);

The lppt argument is the name of an array of POINT objects. The cCount argument specifies
the number of points that would be included in the figure. Here is an example:

//---

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam)
{
 HDC hDC;
 PAINTSTRUCT Ps;

 POINT Pt[7];
Pt[0].x = 20; Pt[0].y = 50;
Pt[1].x = 180; Pt[1].y = 50;
Pt[2].x = 180; Pt[2].y = 20;
Pt[3].x = 230; Pt[3].y = 70;

81

Pt[4].x = 180; Pt[4].y = 120;
Pt[5].x = 180; Pt[5].y = 90;
Pt[6].x = 20; Pt[6].y = 90;

 switch(Msg)
 {
 case WM_PAINT:
 hDC = BeginPaint(hWnd, &Ps);
 PolylineTo(hDC, Pt, 7);
 EndPaint(hWnd, &Ps);
 break;
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//---

While the Polyline() function starts the first line at lppt[0], the PolylineTo() member
function does not control the beginning of the first line. Like the LineTo() function, it simply
starts drawing, which would mean it starts at the origin (0, 0). For this reason, if you want to
control the starting point of the PolylineTo() drawing, you can use the MoveToEx() function:

//---

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam)
{
 HDC hDC;
 PAINTSTRUCT Ps;

 POINT Pt[7];
 Pt[0].x = 20; Pt[0].y = 50;
 Pt[1].x = 180; Pt[1].y = 50;
 Pt[2].x = 180; Pt[2].y = 20;
 Pt[3].x = 230; Pt[3].y = 70;
 Pt[4].x = 180; Pt[4].y = 120;
 Pt[5].x = 180; Pt[5].y = 90;
 Pt[6].x = 20; Pt[6].y = 90;

82

 switch(Msg)
 {
 case WM_PAINT:
 hDC = BeginPaint(hWnd, &Ps);
 MoveToEx(hDC, 20, 30, NULL);
 PolylineTo(hDC, Pt, 7);
 LineTo(hDC, 20, 110);
 EndPaint(hWnd, &Ps);
 break;
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//---

Practical Learning: Drawing a Polyline

1. Under the Arrow menu item of the Draw category, add a new menu item
IDentified as IDM_DRAW_PLOYLINE with a caption of &Polyline with a
Prompt of Draws a series of lines\nPolyline

2. Add a new bitmap to the right of the IDB_STANDARD resource as follows:

3. Save the bitmap

83

4. Design a new cursor as follows:

5. Set its hot spot to the intersection of the left diagonal lines

6. Set its ID to IDC_POLYLINE and save it as polyline.cur

7. To be able to draw a line, change the Exercise.cpp source file as follows:

 . . . No Change

//---
LRESULT CALLBACK MainWndProc(HWND hWnd, UINT Msg,
 WPARAM wParam, LPARAM lParam)
{

HDC hDC;

static BOOL IsDrawing = FALSE;
static int StartX, StartY;
static int EndX, EndY;

switch(Msg)
{
case WM_CREATE:

Exo.CreateStandardToolbar(hWnd, Exo.hInst);
SendMessage(Exo.hWndToolbar, TB_SETSTATE, IDM_DRAW_ARROW,

TBSTATE_CHECKED | TBSTATE_ENABLED);
return 0;

case WM_ACTIVATE:
Exo.Wnd.SetText("RainDrop - Untitled");
return 0;

case WM_LBUTTONDOWN:
hDC = GetDC(hWnd);

StartX = LOWORD(lParam);
StartY = HIWORD(lParam);

EndX = LOWORD(lParam);
EndY = HIWORD(lParam);

84

// If the Line button is down, draw with it
if(SendMessage(Exo.hWndToolbar, TB_GETSTATE, IDM_DRAW_LINE, 0) &

TBSTATE_CHECKED)
{

SetROP2(hDC, R2_XORPEN);

MoveToEx(hDC, StartX, StartY, NULL);
LineTo(hDC, EndX, EndY);

}
else if(SendMessage(Exo.hWndToolbar, TB_GETSTATE,

IDM_DRAW_FREEHAND, 0) & TBSTATE_CHECKED)
{

StartX = LOWORD(lParam);
StartY = HIWORD(lParam);

}
else if(SendMessage(Exo.hWndToolbar, TB_GETSTATE,

IDM_DRAW_POLYLINE, 0) & TBSTATE_CHECKED)
{

SetROP2(hDC, R2_XORPEN);

MoveToEx(hDC, StartX, StartY, NULL);
LineTo(hDC, EndX, EndY);

}

IsDrawing = TRUE;

ReleaseDC(hWnd, hDC);

return 0;

case WM_MOUSEMOVE:
hDC = GetDC(hWnd);

if(IsDrawing == TRUE)
{

SetROP2(hDC, R2_NOTXORPEN);

// Find out if the Line button is clicked
if(SendMessage(Exo.hWndToolbar, TB_GETSTATE,

IDM_DRAW_LINE, 0) & TBSTATE_CHECKED)
{

MoveToEx(hDC, StartX, StartY, NULL);
LineTo(hDC, EndX, EndY);

EndX = LOWORD(lParam);
EndY = HIWORD(lParam);

MoveToEx(hDC, StartX, StartY, NULL);
LineTo(hDC, EndX, EndY);

}
// Find out if the Polyline button is clicked
else if(SendMessage(Exo.hWndToolbar, TB_GETSTATE,

IDM_DRAW_FREEHAND, 0) & TBSTATE_CHECKED)
{

MoveToEx(hDC, EndX, EndY, NULL);
EndX = LOWORD(lParam);

85

EndY = HIWORD(lParam);
LineTo(hDC, EndX, EndY);

}
else if(SendMessage(Exo.hWndToolbar, TB_GETSTATE,

IDM_DRAW_POLYLINE, 0) & TBSTATE_CHECKED)
{

MoveToEx(hDC, StartX, StartY, NULL);
LineTo(hDC, EndX, EndY);

EndX = LOWORD(lParam);
EndY = HIWORD(lParam);

MoveToEx(hDC, StartX, StartY, NULL);
LineTo(hDC, EndX, EndY);

}
}

ReleaseDC(hWnd, hDC);
break;

case WM_LBUTTONUP:

hDC = GetDC(hWnd);

EndX = LOWORD(lParam);
EndY = HIWORD(lParam);

SetROP2(hDC, R2_XORPEN);

MoveToEx(hDC, StartX, StartY, NULL);
LineTo(hDC, EndX, EndY);

if(SendMessage(Exo.hWndToolbar, TB_GETSTATE, IDM_DRAW_LINE, 0) &
TBSTATE_CHECKED)

{
IsDrawing = FALSE;

}

if(SendMessage(Exo.hWndToolbar, TB_GETSTATE, IDM_DRAW_FREEHAND, 0)
& TBSTATE_CHECKED)

{
IsDrawing = FALSE;

}

ReleaseDC(hWnd, hDC);

break;

case WM_KEYDOWN:
switch(wParam)
{
case VK_ESCAPE:

// If the user press Esc, may be he/she was drawing a
polyline

// In that case, stop drawing
IsDrawing = FALSE;

86

break;

default:
break;

}
break;

case WM_COMMAND:
switch(LOWORD(wParam))
{
case IDM_FILE_NEW:

break;

case IDM_FILE_OPEN:
break;

case IDM_FILE_SAVE:
break;

case IDM_FILE_SAVEAS:
break;

case IDM_FILE_EXIT:
PostQuitMessage(WM_QUIT);
break;

case IDM_DRAW_ARROW:
SendMessage(Exo.hWndToolbar, TB_SETSTATE, IDM_DRAW_ARROW,

TBSTATE_CHECKED | TBSTATE_ENABLED);
Exo.ChangeCurrentCursor(hWnd, IDC_ARROW);
break;

case IDM_DRAW_FREEHAND:
SendMessage(Exo.hWndToolbar, TB_SETSTATE,

IDM_DRAW_FREEHAND, TBSTATE_CHECKED | TBSTATE_ENABLED);
Exo.ChangeCurrentCursor(hWnd,

MAKEINTRESOURCE(IDC_FREEHAND));
break;

case IDM_DRAW_LINE:
SendMessage(Exo.hWndToolbar, TB_SETSTATE, IDM_DRAW_LINE,

TBSTATE_CHECKED | TBSTATE_ENABLED);
Exo.ChangeCurrentCursor(hWnd, MAKEINTRESOURCE(IDC_LINE));
break;

case IDM_DRAW_POLYLINE:
SendMessage(Exo.hWndToolbar, TB_SETSTATE,

IDM_DRAW_POLYLINE, TBSTATE_CHECKED | TBSTATE_ENABLED);
Exo.ChangeCurrentCursor(hWnd,

MAKEINTRESOURCE(IDC_POLYLINE));
break;

}
return 0;

case WM_DESTROY:
PostQuitMessage(WM_QUIT);

87

return 0;

default:
return DefWindowProc(hWnd, Msg, wParam, lParam);

}

return TRUE;
}
//---
HWND Exercise::CreateStandardToolbar(HWND hParent, HINSTANCE hInst)
{

const int NUMBUTTONS = 9;
TBBUTTON tbrButtons[NUMBUTTONS];

tbrButtons[0].iBitmap = 0;
tbrButtons[0].idCommand = IDM_FILE_NEW;
tbrButtons[0].fsState = TBSTATE_ENABLED;
tbrButtons[0].fsStyle = TBSTYLE_BUTTON;
tbrButtons[0].dwData = 0L;
tbrButtons[0].iBitmap = 0;
tbrButtons[0].iString = 0;

tbrButtons[1].iBitmap = 1;
tbrButtons[1].idCommand = IDM_FILE_OPEN;
tbrButtons[1].fsState = TBSTATE_ENABLED;
tbrButtons[1].fsStyle = TBSTYLE_BUTTON;
tbrButtons[1].dwData = 0L;
tbrButtons[1].iString = 0;

tbrButtons[2].iBitmap = 2;
tbrButtons[2].idCommand = IDM_FILE_SAVE;
tbrButtons[2].fsState = TBSTATE_ENABLED;
tbrButtons[2].fsStyle = TBSTYLE_BUTTON;
tbrButtons[2].dwData = 0L;
tbrButtons[2].iString = 0;

tbrButtons[3].iBitmap = 3;
tbrButtons[3].idCommand = IDM_FILE_PRINT;
tbrButtons[3].fsState = TBSTATE_ENABLED;
tbrButtons[3].fsStyle = TBSTYLE_BUTTON;
tbrButtons[3].dwData = 0L;
tbrButtons[3].iString = 0;

tbrButtons[4].iBitmap = 0;
tbrButtons[4].idCommand = 0;
tbrButtons[4].fsState = TBSTATE_ENABLED;
tbrButtons[4].fsStyle = TBSTYLE_SEP;
tbrButtons[4].dwData = 0L;
tbrButtons[4].iString = 0;

tbrButtons[5].iBitmap = 4;
tbrButtons[5].idCommand = IDM_DRAW_ARROW;
tbrButtons[5].fsState = TBSTATE_ENABLED;
tbrButtons[5].fsStyle = TBSTYLE_BUTTON | TBSTYLE_GROUP | TBSTYLE_CHECK;
tbrButtons[5].dwData = 0L;
tbrButtons[5].iString = 0;

88

tbrButtons[6].iBitmap = 5;
tbrButtons[6].idCommand = IDM_DRAW_FREEHAND;
tbrButtons[6].fsState = TBSTATE_ENABLED;
tbrButtons[6].fsStyle = TBSTYLE_BUTTON | TBSTYLE_GROUP | TBSTYLE_CHECK;
tbrButtons[6].dwData = 0L;
tbrButtons[6].iString = 0;

tbrButtons[7].iBitmap = 6;
tbrButtons[7].idCommand = IDM_DRAW_LINE;
tbrButtons[7].fsState = TBSTATE_ENABLED;
tbrButtons[7].fsStyle = TBSTYLE_BUTTON | TBSTYLE_GROUP | TBSTYLE_CHECK;
tbrButtons[7].dwData = 0L;
tbrButtons[7].iString = 0;

tbrButtons[8].iBitmap = 7;
tbrButtons[8].idCommand = IDM_DRAW_POLYLINE;
tbrButtons[8].fsState = TBSTATE_ENABLED;
tbrButtons[8].fsStyle = TBSTYLE_BUTTON | TBSTYLE_GROUP | TBSTYLE_CHECK;
tbrButtons[8].dwData = 0L;
tbrButtons[8].iString = 0;

hWndToolbar = CreateToolbarEx(hParent,
 WS_VISIBLE | WS_CHILD | WS_BORDER,

 IDB_STANDARD,
 NUMBUTTONS,

 hInst,
 IDB_STANDARD,

 tbrButtons,
 NUMBUTTONS,

 16, 16, 16, 16,
 sizeof(TBBUTTON));
if(hWndToolbar)

return hWndToolbar;
return NULL;

}
//---

89

8. Execute the application to test it

9. Return to your programming environment

Multiple Polylines

The above polylines were used each as a single entity. That is, a polyline is a combination of
lines. If you want to draw various polylines in one step, you can use the PolyPolyline()
function. By definition, the PolyPolyline() function is used to draw a series of polylines. Its
syntax is:

BOOL PolyPolyline(HDC hdc, CONST POINT *lppt, CONST DWORD *lpdwPolyPoints, DWORD
cCount);

Like the above Polyline() function, the lppt argument is an array of POINT values. The
PolyPolyline() function needs to know how many polylines you would be drawing.

Each polyline will use the points of the lpdwPolyPoints value but when creating the array of
points, the values must be incremental. This means that PolyPolyline() will not access their
values at random. It will retrieve the first point, followed by the second, followed by the third,
etc. Therefore, your first responsibility is to decide where one polyline starts and where it ends.
The good news (of course depending on how you see it) is that a polyline does not start where
the previous line ended. Each polyline has its own beginning and its own ending point.

Unlike Polyline(), here, the cCount argument is actually the number of shapes you want to
draw and not the number of points (remember that each polyline "knows" or controls its
beginning and end).

The lpdwPolyPoints argument is an array or positive integers. Each member of this array

90

specifies the number of vertices (lines) that its corresponding polyline will have. For example,
imagine you want to draw M, followed by L, followed by Z. The letter M has 4 lines but you
need 5 points to draw it. The letter L has 2 lines and you need 3 points to draw it. The letter Z
has 3 lines so 4 points are necessary to draw it. You can store this combination of lines in an
array defined as { 5, 3, 4 }.

Here is an example:

//---

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam)
{
 HDC hDC;
 PAINTSTRUCT Ps;

 POINT Pt[15];
DWORD lpPts[] = { 4, 4, 7 };

// Left Triangle
Pt[0].x = 50;
Pt[0].y = 20;
Pt[1].x = 20;
Pt[1].y = 60;
Pt[2].x = 80;
Pt[2].y = 60;
Pt[3].x = 50;
Pt[3].y = 20;

// Second Triangle
Pt[4].x = 70;
Pt[4].y = 20;
Pt[5].x = 100;
Pt[5].y = 60;
Pt[6].x = 130;
Pt[6].y = 20;
Pt[7].x = 70;
Pt[7].y = 20;

// Hexagon
Pt[8].x = 145;
Pt[8].y = 20;
Pt[9].x = 130;
Pt[9].y = 40;
Pt[10].x = 145;
Pt[10].y = 60;
Pt[11].x = 165;
Pt[11].y = 60;
Pt[12].x = 180;
Pt[12].y = 40;
Pt[13].x = 165;
Pt[13].y = 20;
Pt[14].x = 145;
Pt[14].y = 20;

91

 switch(Msg)
 {
 case WM_PAINT:
 hDC = BeginPaint(hWnd, &Ps);
 PolyPolyline(hDC, Pt, lpPts, 3);
 EndPaint(hWnd, &Ps);
 break;
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//---

GDI Built-In Shapes

Closed Shapes
Polygons

The polylines we have used so far were drawn by defining the starting point of the first line and
the end point of the last line and there was no relationship or connection between these two
extreme points. A polygon is a closed polyline. In other words, it is a polyline defined so that
the end point of the last line is connected to the start point of the first line.

To draw a polygon, you can use the Polygon() function. Its syntax is:

BOOL Polygon(HDC hdc, CONST POINT *lpPoints, int nCount);

This function uses the same types of arguments as the Polyline() function. The only difference
is on the drawing of the line combination. Here is an example:

92

//---

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam)
{
 HDC hDC;
 PAINTSTRUCT Ps;

 POINT Pt[7];
Pt[0].x = 20;
Pt[0].y = 50;
Pt[1].x = 180;
Pt[1].y = 50;
Pt[2].x = 180;
Pt[2].y = 20;
Pt[3].x = 230;
Pt[3].y = 70;
Pt[4].x = 180;
Pt[4].y = 120;
Pt[5].x = 180;
Pt[5].y = 90;
Pt[6].x = 20;
Pt[6].y = 90;

 switch(Msg)
 {
 case WM_PAINT:
 hDC = BeginPaint(hWnd, &Ps);
 Polygon(hDC, Pt, 7);
 EndPaint(hWnd, &Ps);
 break;
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//---

93

Multiple Polygons

If you want to draw multiple polygons, you can use the PolyPolygon() function whose syntax is:

BOOL PolyPolygon(HDC hdc, CONST POINT *lpPoints,
 CONST INT *lpPolyCounts, int nCount);

Like the Polygon() function, the lpPoints argument is an array of POINT values. The
PolyPolygon() function needs to know the number of polygons you would be drawing. Each
polygon uses the points of the lpPoints values but when creating the array of points, the values
must be incremental. This means that PolyPolygon() will not randomly access the values of
lpPoints. Each polygon has its own set of points.

Unlike Polygon(), the nCount argument of PolyPolygon() is the number of polygons you
want to draw and not the number of points.

The lpPolyCounts argument is an array or integers. Each member of this array specifies the
number of vertices (lines) that its polygon will have..

Here is an example:

//---

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam)
{
 HDC hDC;
 PAINTSTRUCT Ps;

 POINT Pt[12];
int lpPts[] = { 3, 3, 3, 3 };

// Top Triangle
Pt[0].x = 125;
Pt[0].y = 10;
Pt[1].x = 95;
Pt[1].y = 70;
Pt[2].x = 155;
Pt[2].y = 70;

// Left Triangle
Pt[3].x = 80;
Pt[3].y = 80;
Pt[4].x = 20;
Pt[4].y = 110;
Pt[5].x = 80;
Pt[5].y = 140;

// Bottom Triangle
Pt[6].x = 95;
Pt[6].y = 155;
Pt[7].x = 125;
Pt[7].y = 215;
Pt[8].x = 155;
Pt[8].y = 155;

94

// Right Triangle
Pt[9].x = 170;
Pt[9].y = 80;
Pt[10].x = 170;
Pt[10].y = 140;
Pt[11].x = 230;
Pt[11].y = 110;

 switch(Msg)
 {
 case WM_PAINT:
 hDC = BeginPaint(hWnd, &Ps);
 PolyPolygon(hDC, Pt, lpPts, 4);
 EndPaint(hWnd, &Ps);
 break;
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//---

Rectangles and Squares

A rectangle is a geometric figure made of four sides that compose four right angles. Like the
line, to draw a rectangle, you must define where it starts and where it ends. This can be
illustrated as follows:

95

The drawing of a rectangle typically starts from a point defined as (X1, Y1) and ends at another
point (X2, Y2).

To draw a rectangle, you can use the Rectangle() function. Its syntax is:

BOOL Rectangle(HDC hdc, int nLeftRect, int nTopRect, int nRightRect, int
nBottomRect);

As seen on the figure and the formula, a rectangle spans from coordinates (nLeftRect,
nTopRect) to (nRightRect, nBottomRect). Here is an example:

//---

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam)
{
 HDC hDC;
 PAINTSTRUCT Ps;

 switch(Msg)
 {
 case WM_PAINT:
 hDC = BeginPaint(hWnd, &Ps);
 Rectangle(hDC, 20, 20, 226, 144);
 EndPaint(hWnd, &Ps);
 break;
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//---

96

When drawing a rectangle, if the value of nRightRect is less than that of nLeftRect, then the
nRightRect coordinate would mark the left beginning of the figure. This scenario would also
apply if the nBottomRectcoordinate were lower than nTopRect.

A square is a rectangle whose sides are all equal. Therefore, to draw a square, when specifying
the arguments of the Rectangle() function, make sure that |x1 - x2| = |y1 - y2|.

A Rectangle With Edges

The GDI library provides another function you can use to draw a rectangle. This time you can
control how the edges of the rectangle would be drawn. The function used is called DrawEdge
and its syntax is:

BOOL DrawEdge(HDC hdc, LPRECT qrc, UINT edge, UINT grfFlags);

The qrc argument is passed as a pointer to a RECT value, which is the rectangle that would be
drawn.

The edge value specifies how the interior and the exterior of the edges of the rectangle would
be drawn. It can be a combination of the following constants:

 Value Description
 BDR_RAISEDINNER The interior edge will be raised
 BDR_SUNKENINNER The interior edge will be sunken
 BDR_RAISEDOUTER The exterior edge will be raised
 BDR_SUNKENOUTER The exterior edge will be sunken

These values can be combined using the bitwise OR operator. On the other hand, you can use
the following constants instead:

 Value Used For
 EDGE_DUMP BDR_RAISEDOUTER | BDR_SUNKENINNER
 EDGE_ETCHED BDR_SUNKENOUTER | BDR_RAISEDINNER
 EDGE_RAISED BDR_RAISEDOUTER | BDR_RAISEDINNER
 EDGE_SUNKEN BDR_SUNKENOUTER | BDR_SUNKENINNER

97

The grfFlags value specifies what edge(s) would be drawn. It can have one of the following
values:

 Value Description
 BF_RECT The entire rectangle will be drawn
 BF_TOP Only the top side will be drawn
 BF_LEFT Only the left side will be drawn
 BF_BOTTOM Only the bottom side will be drawn
 BF_RIGHT Only the right side will be drawn

 BF_TOPLEFT
Both the top and the left sides will
be drawn

 BF_BOTTOMLEFT
Both the bottom and the left sides
will be drawn

 BF_TOPRIGHT
Both the top and the right sides will
be drawn

 BF_BOTTOMRIGHT
Both the bottom and the right sides
will be drawn

 BF_DIAGONAL_ENDBOTTOMLEFT
A diagonal line will be drawn from
the top-right to the bottom-left
corners

 BF_DIAGONAL_ENDBOTTOMRIGHT
A diagonal line will be drawn from
the top-left to the bottom-right
corners

 BF_DIAGONAL_ENDTOPLEFT
A diagonal line will be drawn from
the bottom-right to the top-left
corners

 BF_DIAGONAL_ENDTOPRIGHT
A diagonal line will be drawn from
the bottom-left to the top-right
corners

Here is an example:

//---
LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM lParam)
{
 HDC hDC;
 PAINTSTRUCT Ps;

 RECT Recto = {20, 20, 225, 115};

 switch(Msg)
 {
 case WM_PAINT:
 hDC = BeginPaint(hWnd, &Ps);

DrawEdge(hDC, &Recto, BDR_RAISEDOUTER | BDR_SUNKENINNER, BF_RECT);
 EndPaint(hWnd, &Ps);
 break;
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);

98

 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//---

Ellipses and Circles

An ellipse is a closed continuous line whose points are positioned so that two points exactly
opposite each other have the exact same distant from a central point. It can be illustrated as
follows:

Because an ellipse can fit in a rectangle, in GDI programming, an ellipse is defined with regards
to a rectangle it would fit in. Therefore, to draw an ellipse, you specify its rectangular corners.
The syntax used to do this is:

BOOL Ellipse(HDC hdc, int nLeftRect, int nTopRect, int nRightRect, int
nBottomRect);

The arguments of this function play the same roll as those of the Rectangle() function:

99

Here is an example:

//---

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam)
{
 HDC hDC;
 PAINTSTRUCT Ps;

 switch(Msg)
 {
 case WM_PAINT:
 hDC = BeginPaint(hWnd, &Ps);

Ellipse(hDC, 20, 20, 226, 144);
 EndPaint(hWnd, &Ps);
 break;
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//---

100

Round Rectangles and Round Squares

A rectangle qualifies as round if its corners do not form straight angles but rounded corners. It
can be illustrated as follows:

To draw such a rectangle, you can use the RoundRect() function. Its syntax is:

BOOL RoundRect(HDC hdc,
 int nLeftRect, int nTopRect, int nRightRect, int nBottomRect,
 int nWidth, int nHeight);

When this member function executes, the rectangle is drawn from the (nLeftRect, nTopRect) to
the (nRightRect, nBottomRect) points. The corners are rounded by an ellipse whose width
would be nWidth and the ellipse's height would be nHeight.

Here is an example:

//---

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam)
{
 HDC hDC;
 PAINTSTRUCT Ps;

 switch(Msg)
 {
 case WM_PAINT:
 hDC = BeginPaint(hWnd, &Ps);

RoundRect(hDC, 20, 20, 275, 188, 42, 38);
 EndPaint(hWnd, &Ps);
 break;
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;

101

}
//---

A round square is a square whose corners are rounded.

Pies

A pie is a fraction of an ellipse delimited by two lines that span from the center of the ellipse to
one side each. It can be illustrated as follows:

To draw a pie, you can use the Pie() function whose syntax is:

BOOL Pie(HDC hdc,
 int nLeftRect, int nTopRect, int nRightRect, int nBottomRect,
 int nXRadial1, int nYRadial1, int nXRadial2, int nYRadial2);

The (nLeftRect, nTopRect) point determines the upper-left corner of the rectangle in which the
ellipse that represents the pie fits. The (nRightRect, nBottomRect) point is the bottom-right
corner of the rectangle.

The (nXRadial1, nYRadial1) point species the end point of the pie.

To complete the pie, a line is drawn from (nXRadial1, nYRadial1) to the center and from the

102

center to the (nXRadial2, nYRadial2) points.

Here is an example:

//---

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam)
{
 HDC hDC;
 PAINTSTRUCT Ps;

 switch(Msg)
 {
 case WM_PAINT:
 hDC = BeginPaint(hWnd, &Ps);

Pie(hDC, 40, 20, 226, 144, 155, 32, 202, 115);
 EndPaint(hWnd, &Ps);
 break;
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//---

Arcs

An arc is a portion or segment of an ellipse, meaning an arc is a non-complete ellipse. Because
an arc must confirm to the shape of an ellipse, it is defined as it fits in a rectangle and can be
illustrated as follows:

103

To draw an arc, you can use the Arc() function whose syntax is:

BOOL Arc(HDC hdc,
 int nLeftRect, int nTopRect, int nRightRect, int nBottomRect,
 int nXStartArc, int nYStartArc, int nXEndArc, int nYEndArc);

Besides the left (nLeftRect, nTopRect) and the right (nRightRect, nBottomRect) borders of the
rectangle in which the arc would fit, an arc must specify where it starts and where it ends.
These additional points are set as the (nXStartArc, nYStartArc) and (nXEndArc, nYEndArc)
points of the figure. Based on this, the above arc can be illustrated as follows:

Here is an example:

//---

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam)
{
 HDC hDC;
 PAINTSTRUCT Ps;

 switch(Msg)
 {
 case WM_PAINT:
 hDC = BeginPaint(hWnd, &Ps);

Arc(hDC, 20, 20, 226, 144, 202, 115, 105, 32);

104

 EndPaint(hWnd, &Ps);
 break;
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//---

Besides the Arc() function, the GDI library provides the ArcTo() member function used to
draw an arc. Its syntaxes is:

BOOL ArcTo(HDC hdc,
 int nLeftRect, int nTopRect, int nRightRect, int nBottomRect,
 int nXRadial1, int nYRadial1, int nXRadial2, int nYRadial2);

This function uses the same arguments as Arc(). The difference is that while Arc() starts
drawing at (nXRadial1, nYRadial1), ArcTo() does not inherently control the drawing starting
point. It refers to the current point, exactly like the LineTo() (and the PolylineTo()) function.
Therefore, if you want to specify where the drawing should start, can call MoveToEx() before
ArcTo(). Here is an example:

//---

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam)
{
 HDC hDC;
 PAINTSTRUCT Ps;

 switch(Msg)
 {
 case WM_PAINT:
 hDC = BeginPaint(hWnd, &Ps);

MoveToEx(hDC, 207, 155, NULL);
ArcTo(hDC, 20, 20, 226, 144, 202, 115, 105, 32);

 EndPaint(hWnd, &Ps);
 break;
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;

105

 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//---

The Arc's Direction

Here is and arc we drew earlier with a call to Arc():

//---

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam)
{
 HDC hDC;
 PAINTSTRUCT Ps;

 switch(Msg)
 {
 case WM_PAINT:
 hDC = BeginPaint(hWnd, &Ps);

Arc(hDC, 20, 20, 226, 144, 202, 115, 105, 32);
 EndPaint(hWnd, &Ps);
 break;
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//---

106

You may wonder why the arc is drawn to the right side of a vertical line that would cross the
center of the ellipse instead of the left. This is because the drawing of an arc is performed from
right to left or from bottom to top, in the opposite direction of the clock. This is known as the
counterclockwise direction. To control this orientation, the GDI library is equipped with the
SetArcDirection() function. Its syntax is:

int SetArcDirection(HDC hdc, int ArcDirection);

This function specifies the direction the Arc() function should follow from the starting to the
end points. The argument passed as ArcDirection controls this orientation. It can have the
following values:

 Value Orientation
 AD_CLOCKWISE The figure is drawn clockwise

 AD_COUNTERCLOCKWISE The figure is drawn counterclockwise

The default value of the direction is AD_COUNTERCLOCKWISE. Therefore, this would be used
if you do not specify a direction. Here is an example that uses the same values as above with a
different orientation:

//---

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam)
{
 HDC hDC;
 PAINTSTRUCT Ps;

 switch(Msg)
 {
 case WM_PAINT:
 hDC = BeginPaint(hWnd, &Ps);
 SetArcDirection(hDC, AD_CLOCKWISE);
 Arc(hDC, 20, 20, 226, 144, 202, 115, 105, 32);
 EndPaint(hWnd, &Ps);
 break;
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:

107

 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//---

After calling SetArcDirection() and changing the previous direction, all drawings would use
the new direction to draw arcs using Arc() or ArcTo() and other figures (such as chords,
ellipses, pies, and rectangles). Here is an example:

//---

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam)
{
 HDC hDC;
 PAINTSTRUCT Ps;

 switch(Msg)
 {
 case WM_PAINT:
 hDC = BeginPaint(hWnd, &Ps);
 SetArcDirection(hDC, AD_COUNTERCLOCKWISE);
 Arc(hDC, 20, 20, 226, 144, 202, 115, 105, 32);
 Arc(hDC, 10, 10, 250, 155, 240, 85, 24, 48);
 EndPaint(hWnd, &Ps);
 break;
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//---

108

If you want to change the direction, you must call SetArcDirection() with the desired value.
Here is an example;

//---

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam)
{
 HDC hDC;
 PAINTSTRUCT Ps;

 switch(Msg)
 {
 case WM_PAINT:
 hDC = BeginPaint(hWnd, &Ps);
 SetArcDirection(hDC, AD_COUNTERCLOCKWISE);
 Arc(hDC, 20, 20, 226, 144, 202, 115, 105, 32);
 SetArcDirection(hDC, AD_CLOCKWISE);
 Arc(hDC, 10, 10, 250, 155, 240, 85, 24, 48);
 EndPaint(hWnd, &Ps);
 break;
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//---

109

At any time, you can find out the current direction used. This is done by calling the
GetArcDirection() function. Its syntax is:

int GetArcDirection(HDC hdc);

This function returns the current arc direction as AD_CLOCKWISE or
AD_COUNTERCLOCKWISE.

Angular Arcs

You can (also) draw an arc using the AngleArc() function. Its syntax is:

BOOL AngleArc(HDC hdc, int X, int Y, DWORD dwRadius,
 FLOAT eStartAngle, FLOAT eSweepAngle);

This function draws a line and an arc connected. The arc is based on a circle and not an ellipse.
This implies that the arc fits inside a square and not a rectangle. The circle that would be the
base of the arc is defined by its center located at C(X, Y) with a radius of dwRadius. The arc
starts at an angle of eStartAngle. The angle is based on the x axis and must be positive. That
is, it must range from 0° to 360°. If you want to specify an angle that is below the x axis, such
as -15°, use 360º-15°=345°. The last argument, eSweepAngle, is the angular area covered by
the arc.

The AngleArc() function does not control where it starts drawing. This means that it starts at
the origin, unless a previous call to MoveToEx() specified the beginning of the drawing.

Here is an example:

//---

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam)
{
 HDC hDC;
 PAINTSTRUCT Ps;

 switch(Msg)
 {
 case WM_PAINT:

110

 hDC = BeginPaint(hWnd, &Ps);
 MoveToEx(hDC, 52, 28, NULL);
 AngleArc(hDC, 120, 45, 142, 345, -65);
 EndPaint(hWnd, &Ps);
 break;
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//---

Chords

The arcs we have drawn so far are considered open figures because they are made of a line
that has a beginning and an end (unlike a circle or a rectangle that do not). A chord is an arc
whose two ends are connected by a straight line. In other words, a chord is an ellipse that is
divided by a straight line from one side to another:

To draw a chord, you can use the Chord() function. Its syntax is as follows:

BOOL Chord(HDC hdc,

111

 int nLeftRect, int nTopRect, int nRightRect, int nBottomRect,
 int nXRadial1, int nYRadial1, int nXRadial2, int nYRadial2);

The nLeftRect, nTopRect, nRightRect, and nBottomRect are the coordinates of the rectangle in
which the chord of the circle would fit.

These nXRadial1 and nYRadial1 coordinates specify where the arc that holds the chord starts.

To complete the chord, a line is drawn from (nXRadial1, nYRadial1) to (nXRadial2, nYRadial2).

Here is an example:

//---

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam)
{
 HDC hDC;
 PAINTSTRUCT Ps;

 switch(Msg)
 {
 case WM_PAINT:
 hDC = BeginPaint(hWnd, &Ps);
 Chord(hDC, 20, 20, 226, 144, 202, 115, 105, 32);
 EndPaint(hWnd, &Ps);
 break;
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}

Bézier Curves

A bézier line is an arc that is strictly based on a set number of points instead of on an ellipse. A
bézier curve uses at least four points to draw on. A bézier line with four points can be
illustrated as follows:

112

To draw this line (with four points), the compiler would draw a curve from the first to the fourth
points. Then it would bend the curve by bringing each middle (half-center) side close to the
second and the third points respectively, of course without touching those second and third
points. For example, the above bézier curve could have been drawn using the following four
points:

PolyBezier(): To draw a bézier curve, the GDI library provides the PolyBezier() function. Its
syntax is:

BOOL PolyBezier(HDC hdc, CONST POINT *lppt, DWORD cPoints);

The lppt argument is an array of POINT values. The cPoints argument specifies the number of
points that will be used to draw the line. Here is an example:

//---
LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM lParam)
{
 HDC hDC;
 PAINTSTRUCT Ps;

 POINT Pt[4] = { { 20, 12 }, { 88, 246 }, { 364, 192 }, { 250, 48 } };

 switch(Msg)
 {

113

 case WM_PAINT:
 hDC = BeginPaint(hWnd, &Ps);
 PolyBezier(hDC, Pt, 4);
 EndPaint(hWnd, &Ps);
 break;
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//---

PolyBezierTo(): The PolyBezier() function requires at least four points to draw its curve. This
is because it needs to know where to start drawing. Another way you can control where the
curve would start is by using the PolyBezierTo() function. Its syntax is:

BOOL PolyBezierTo(HDC hdc, CONST POINT *lppt, DWORD cCount);

The PolyBezierTo() function draws a bézier curve. Its first argument is a pointer to an array
of POINT values. This member function requires at least three points. It starts drawing from
the current line to the third point. If you do not specify the current line, it would consider the
origin (0, 0). The first and the second lines are used to control the curve. The cCount argument
is the number of points that would be considered. Here is an example:

//--

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam)
{
 HDC hDC;
 PAINTSTRUCT Ps;

 POINT Pt[4] = { { 320, 120 }, { 88, 246 }, { 364, 122 } };

 switch(Msg)
 {
 case WM_PAINT:

114

 hDC = BeginPaint(hWnd, &Ps);
 PolyBezierTo(hDC, Pt, 3);
 EndPaint(hWnd, &Ps);
 break;
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//--

GDI Colors

115

The color is one the most fundamental objects that enhances the aesthetic appearance of an object.
The color is a non-spatial object that is added to an object to modify some of its visual aspects. The
MFC library, combined with the Win32 API, provides various actions you can use to take advantage of
the various aspects of colors.

Three numeric values are used to create a color. Each one of these values is 8 bits. The first number
is called red. The second is called green. The third is called blue:

Bits

Red 7 6 5 4 3 2 1 0

Green 7 6 5 4 3 2 1 0

Blue 7 6 5 4 3 2 1 0

Converted to decimal, each one of these numbers would produce:

27 + 26 + 25 + 24 + 23 + 22 + 21 + 20

= 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1

= 255

Therefore, each number can have a value that ranges from 0 to 255 in the decimal system.
These three numbers are combined to produce a single number as follows:

Color

Value
2322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

Blue Green Red

Converted to decimal, this number has a value of 255 * 255 * 255 = 16581375. This means that we
can have approximately 16 million colors available. The question that comes to mind is how we use
these colors, to produce what effect.

You computer monitor has a surface that resembles a series of tinny horizontal and vertical lines. The
intersection of a one horizontal line and a vertical line is called a pixel. This pixel holds, carries, or
displays one color.

As the pixels close to each other have different colors, the effect is a wonderful distortion that creates
an aesthetic picture. It is by changing the colors of pixels that you produce the effect of color
variances seen on pictures and other graphics.

The Color as a Data Type
Microsoft Windows considers that a color is a 32-bit numeric value. Therefore, a color is actually a
combination of 32 bits:

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

116

Bitmaps

Introduction
A bitmap is a series of points (bits) arranged like a map so that, when put together, they produce
a picture that can be written to, copied from, re-arranged, changed, manipulated, or stored as a
a computer file. Bitmaps are used to display pictures on graphical applications, word processors,
database files, or audience presentations. To display its product on a device such as a monitor or
a printer, a bitmap holds some properties and follows a set of rules.

There are various types of bitmaps, based on the number of colors that the bitmap can display.
First of all, a bitmap can be monochrome, in which case each pixel corresponds to 1 bit. A bitmap
can also be colored. The number of colors that a bitmap can display is equal to 2 raised to the
number of pits/pixel. For example, a simple bitmap uses only 4 pits/pixel or 4 bpp can handle
only 24 = 16 colors. A more enhanced bitmap that requires 8 bpp can handle 28 = 256 colors.
Bitmaps are divided in two categories that control their availability to display on a device.

A device-independent bitmap (DIB) is a bitmap that is designed to be loaded on any application
or display on any device and produce the same visual effect. To make this possible, such a
bitmap contains a table of colors that describes how the colors of the bitmap should be used on
pixels when displaying it. The characteristics of a DIB are defined by the BITMAPINFO structure.

A device-dependent bitmap (DDB) is a bitmap created from the BITMAP structure using the
dimensions of the bitmap.

Bitmap Creation
Unlike the other GDI tools, creating a bitmap usually involves more steps. For example, you may
want to create a bitmap to display on a window. You may create another bitmap to paint a
geometric area, in which case the bitmap would be used as a brush.

Before creating a bitmap as a GDI object, you should first have a bitmap. You can do this by
defining an array of unsigned hexadecimal numbers. Such a bitmap can be used for a brush.

One way you can use a bitmap is to display a picture on a window. To do this, you must first
have a picture resource. Although the image editors of both Borland C++ Builder and Microsoft
Visual C++ are meant to help with regular application resources, they have some limitations.
Nevertheless, once your bitmap is ready, call the LoadBitmap() function. Its syntax is:

HBITMAP LoadBitmap(HINSTANCE hInstance, LPCTSTR lpBitmapName);

The hInstance argument is the instance of the application that contains the bitmap you want to
use

The lpBitmapName argument is the string that determines where the bitmap file is located. If
you had imported the bitmap, you can use the MAKEINTRESOURCE macro to convert this string.

Before selecting the newly created bitmap object, allocate a block of computer memory that
would hold the bitmap. You can then copy it to the actual device. This job can be taken care of
by the CreateCompatibleDC() function. Its syntax is:

HBITMAP CreateCompatibleBitmap(HDC hdc, int nWidth, int nHeight);

117

This function takes a pointer to a device context. If it is successful, it returns TRUE or a non-zero
value. If it is not, it returns FALSE or 0.

1. For an example, start MSVC to create a new Win32 Project and name it
Bitmap1

2. Create it as a Windows Application and Empty Project

3. Save this bitmap in your computer as exercise.bmp

4. On the main menu, click either (MSVC 6) Insert -> Resource... or (MSVC .Net)
Project -> Add Resource...

5. Click the Import... button

6. Locate the above picture from your computer and open or import it

7. In the Properties window, change its ID to IDB_EXERCISING

8. Save the resource. If you are using MSVC 6, save the resource script as
Bitmap1.rc then add it to your project (Project -> Add To Project -> Files...
Make sure you select the file with rc extension)

9. Add a new C++ (Source) File named Exercise and implement it as follows:

#include <windows.h>
#include "Resource.h"

HINSTANCE hInst;
LRESULT CALLBACK WindProcedure(HWND hWnd, UINT Msg, WPARAM wParam,
LPARAM lParam);

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 WNDCLASSEX WndCls;

118

 static char szAppName[] = "BitmapIntro";
 MSG Msg;

hInst = hInstance;
 WndCls.cbSize = sizeof(WndCls);
 WndCls.style = CS_OWNDC | CS_VREDRAW | CS_HREDRAW;
 WndCls.lpfnWndProc = WindProcedure;
 WndCls.cbClsExtra = 0;
 WndCls.cbWndExtra = 0;
 WndCls.hInstance = hInst;
 WndCls.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 WndCls.hCursor = LoadCursor(NULL, IDC_ARROW);
 WndCls.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
 WndCls.lpszMenuName = NULL;
 WndCls.lpszClassName = szAppName;
 WndCls.hIconSm = LoadIcon(hInstance, IDI_APPLICATION);
 RegisterClassEx(&WndCls);

 CreateWindowEx(WS_EX_OVERLAPPEDWINDOW,
 szAppName,
 "Bitmaps Fundamentals",
 WS_OVERLAPPEDWINDOW | WS_VISIBLE,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 NULL,
 NULL,
 hInstance,
 NULL);

 while(GetMessage(&Msg, NULL, 0, 0))
 {
 TranslateMessage(&Msg);
 DispatchMessage(&Msg);
 }

 return static_cast<int>(Msg.wParam);
}

LRESULT CALLBACK WindProcedure(HWND hWnd, UINT Msg,
 WPARAM wParam, LPARAM lParam)

{
 HDC hDC, MemDCExercising;
 PAINTSTRUCT Ps;
 HBITMAP bmpExercising;

 switch(Msg)
 {

case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
case WM_PAINT:
 hDC = BeginPaint(hWnd, &Ps);

 // Load the bitmap from the resource

119

 bmpExercising = LoadBitmap(hInst,
MAKEINTRESOURCE(IDB_EXERCISING));

 // Create a memory device compatible with the above DC
variable

 MemDCExercising = CreateCompatibleDC(hDC);
 // Select the new bitmap
 SelectObject(MemDCExercising, bmpExercising);

 // Copy the bits from the memory DC into the current dc
 BitBlt(hDC, 10, 10, 450, 400, MemDCExercising, 0, 0,

SRCCOPY);

 // Restore the old bitmap
 DeleteDC(MemDCExercising);
 DeleteObject(bmpExercising);
 EndPaint(hWnd, &Ps);
 break;
default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);

 }
 return 0;
}

10.Test the application

11.Return to your programming environment

GDI Tools - Fonts
Introduction
A font is a list of symbols that can be drawn on a device context to produce a symbol. A font is
designed by an artist but usually follows a specific pattern. For example a font designed to
produce symbols readable in the English language must be designed by a set of predetermined

120

and agreed upon symbols. These English symbols are grouped in an entity called the English
alphabet. When designing such a font, the symbols created must conform to that language. This
also implies that one font can be significantly different from another and a font is not necessarily
a series of readable symbols.

Just like everything else in the computer, a font must have a name. To accommodate the visual
needs, a font is designed to assume different sizes.

Font Selection
Before using a font to draw a symbol on a device, the font must have been installed. Microsoft
Windows installs many fonts during setup. To handle its various assignments, the operating
system uses a particular font known as the System Font. This is the font used to display the
menu items and other labels for resources in applications. If you want to use a different font to
draw text in your application, you must select it.

Selecting a font, as well as selecting any other GDI object, is equivalent to specifying the
characteristics of a GDI object you want to use. To do this, you must first create the object,
unless it exists already. To select an object, pass it as a pointer to the SelectObject() function.
The syntax of this function is:

HGDIOBJ SelectObject(HDC hdc, HGDIOBJ hgdiobj);

This function takes as argument the font you want to use, hgdiobj. It returns a pointer to the
font that was previously selected. If there was a problem when selecting the font, the function
returns NULL. As you can see, you must first have a font you want to select.

Regular Font Creation
A font in Microsoft Windows is stored as an HFONT value.

To Create a font, you can use the CreateFont() function. Its syntax is:

HFONT CreateFont(
 int nHeight,
 int nWidth,
 int nEscapement,
 int nOrientation,
 int fnWeight,
 DWORD fdwItalic,
 DWORD fdwUnderline,
 DWORD fdwStrikeOut,
 DWORD fdwCharSet,
 DWORD fdwOutputPrecision,
 DWORD fdwClipPrecision,
 DWORD fdwQuality,
 DWORD fdwPitchAndFamily,
 LPCTSTR lpszFace
);

The nHeight argument is the height applied to the text.

The nWidth value is the desired width that will be applied on the text.

The nEscapement is the angle used to orient the text. The angle is calculated as a multiple of 0.1
and oriented counterclockwise.

121

The nOrientation is the angular orientation of the text with regards to the horizontal axis.

The nWeight is used to attempt to control the font weight of the text because it is affected by the
characteristics of the font as set by the designer. It holds values that displays text from thin
heavy bold. The possible values are:

Constant Value
FW_DONTCARE 0
FW_THIN 100
FW_EXTRALIGHT 200
FW_ULTRALIGHT 200
FW_LIGHT 300
FW_NORMAL 400
FW_REGULAR 400
FW_MEDIUM 500
FW_SEMIBOLD 600
FW_DEMIBOLD 600
FW_BOLD 700
FW_EXTRABOLD 800
FW_ULTRABOLD 800
FW_BLACK 900
FW_HEAVY 900 The bItalic specifies whether the font will be

italicized (TRUE) or not (FALSE).

The bUnderline is used to underline (TRUE) or not underline (FALSE) the text.

The cStrikeOut is specifies whether the text should be stroke out (TRUE) or not (FALSE) with a
line.

The nCharSet, specifies the character set used. The possible values are:

Constant Value
ANSI_CHARSET 0
DEFAULT_CHARSET 1
SYMBOL_CHARSET 2
SHIFTJIS_CHARSET 128
OEM_CHARSET 255 The nOutPrecision controls the amount precision

used to evaluate the numeric values used on this function for the height, the width, and angles.
It can have one of the following values: OUT_CHARACTER_PRECIS, OUT_STRING_PRECIS,
OUT_DEFAULT_PRECIS, OUT_STROKE_PRECIS, OUT_DEVICE_PRECIS, OUT_TT_PRECIS,
OUT_RASTER_PRECIS

If some characters may be drawn outside of the area in which they are intended, the
nClipPrecision is used to specify how they may be clipped. The possible value used are
CLIP_CHARACTER_PRECIS, CLIP_MASK, CLIP_DEFAULT_PRECIS, CLIP_STROKE_PRECIS,
CLIP_ENCAPSULATE, CLIP_TT_ALWAYS, CLIP_LH_ANGLES.

The nQuality specifies how the function will attempt to match the font's characteristics. The

122

possible values are DEFAULT_QUALITY, PROOF_QUALITY, and DRAFT_QUALITY.
The nPitchAndFamily specifies the category of the font used. It combines the pitch and the family
the intended font belongs to. The pitch can be specified with DEFAULT_PITCH, VARIABLE_PITCH,
or FIXED_PITCH. The pitch is combined using the bitwise OR operator with one of the following
values:

Constant Description
FF_DECORATIVE Used for a decorative or fancy font
FF_DONTCARE Let the compiler specify

FF_MODERN
Modern fonts that have a constant
width

FF_ROMAN Serif fonts with variable width
FF_SCRIPT Script-like fonts
FF_SWISS Sans serif fonts with variable width The lpszFacename is the name of

the font used.

Once you have created a font, you can select it into the device context and use it it for example
to draw text. After using a font, you should delete it to reclaim the memory space its variable
was using. This is done by calling the DeleteObject() function.

Here is an example:

#include <windows.h>

LRESULT CALLBACK WindProcedure(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam);

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 WNDCLASSEX WndCls;
 static char szAppName[] = "ExoFont";
 MSG Msg;

 WndCls.cbSize = sizeof(WndCls);
 WndCls.style = CS_OWNDC | CS_VREDRAW | CS_HREDRAW;
 WndCls.lpfnWndProc = WindProcedure;
 WndCls.cbClsExtra = 0;
 WndCls.cbWndExtra = 0;
 WndCls.hInstance = hInstance;
 WndCls.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 WndCls.hCursor = LoadCursor(NULL, IDC_ARROW);
 WndCls.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
 WndCls.lpszMenuName = NULL;
 WndCls.lpszClassName = szAppName;
 WndCls.hIconSm = LoadIcon(hInstance, IDI_APPLICATION);
 RegisterClassEx(&WndCls);

123

 CreateWindowEx(WS_EX_OVERLAPPEDWINDOW,
 szAppName, "Fonts Fundamentals",
 WS_OVERLAPPEDWINDOW | WS_VISIBLE,
 CW_USEDEFAULT, CW_USEDEFAULT, 450, 220,
 NULL, NULL, hInstance, NULL);

 while(GetMessage(&Msg, NULL, 0, 0))
 {
 TranslateMessage(&Msg);
 DispatchMessage(&Msg);
 }

 return static_cast<int>(Msg.wParam);
}

LRESULT CALLBACK WindProcedure(HWND hWnd, UINT Msg,
 WPARAM wParam, LPARAM lParam)
{
 HDC hDC;
 PAINTSTRUCT Ps;
 HFONT font;

 switch(Msg)
 {
 case WM_PAINT:

hDC = BeginPaint(hWnd, &Ps);

 font = CreateFont(46, 28, 215, 0,
 FW_NORMAL, FALSE, FALSE, FALSE,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS,

 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_ROMAN,

"Times New Roman");

 SelectObject(hDC, font);
 TextOut(hDC, 20, 128, "Euzhan Palcy", 12);
 DeleteObject(font);

EndPaint(hWnd, &Ps);
break;

 case WM_DESTROY:
PostQuitMessage(WM_QUIT);
break;

 default:
return DefWindowProc(hWnd, Msg, wParam, lParam);

 }
 return 0;
}

124

Remember that once an object such as a font has been selected, it remains in the
device context until further notice. For example, if you have created and selected a
font, any text you draw would follow the characteristics of that font. If you want
another font, you must change the previously selected font.

The computer uses the default black color to draw the text. If you want to draw text
with a different color, you can first call the SetTextColor() function and specify the
color of your choice.

Logical Font Creation

The CreateFont() function is used to specify all characteristics of a font in one step.
Alternatively, if you want to specify each font property, you can declare a LOGFONT
variable and initialize it. It is defined as follows:

typedef struct tagLOGFONT {
LONG lfHeight;
LONG lfWidth;
LONG lfEscapement;
LONG lfOrientation;
LONG lfWeight;
BYTE lfItalic;
BYTE lfUnderline;
BYTE lfStrikeOut;
BYTE lfCharSet;
BYTE lfOutPrecision;
BYTE lfClipPrecision;
BYTE lfQuality;
BYTE lfPitchAndFamily;
TCHAR lfFaceName[LF_FACESIZE];
} LOGFONT, *PLOGFONT;

This time, you do not have to provide a value for each member of the structure and
even if you do, you can supply values in the order of your choice. For any member
whose value is not specified, the compiler would use a default value but you may not
like some the result. Therefore, you should specify as many values as possible.

After initializing the LOGFONT variable, call the CreateFontIndirect() function. Its
syntax is:

BOOL CreateFontIndirect(const LOGFONT* lpLogFont);

125

When calling this member function, pass the LOGFONT variable as a pointer,
lpLogFont.

To select the newly created font, call the SelectObject() function. Once done, you
can use the new font as you see fit. Here is an example:

LRESULT CALLBACK WindProcedure(HWND hWnd, UINT Msg,
 WPARAM wParam, LPARAM lParam)
{
 HDC hDC;
 PAINTSTRUCT Ps;
 HFONT font;
 LOGFONT LogFont;

 switch(Msg)
 {
 case WM_PAINT:

hDC = BeginPaint(hWnd, &Ps);

 LogFont.lfStrikeOut = 0;
 LogFont.lfUnderline = 0;
 LogFont.lfHeight = 42;
 LogFont.lfEscapement = 0;
 LogFont.lfItalic = TRUE;

 font = CreateFontIndirect(&LogFont);
 SelectObject(hDC, font);
 TextOut(hDC, 20, 18, "James Kolowski", 14);

 DeleteObject(font);

EndPaint(hWnd, &Ps);
break;

 case WM_DESTROY:
PostQuitMessage(WM_QUIT);
break;

 default:
return DefWindowProc(hWnd, Msg, wParam, lParam);

 }
 return 0;
}

Font Retrieval

If some text is displaying and you want to get the font properties of that text, you can
call the GetObject() function. Its syntax is:

int GetObject(HGDIOBJ hgdiobj, int cbBuffer, LPVOID lpvObject);

126

Pens
The Fundamentals of a Pen
As mentioned already, in order to draw, two primary objects are needed: a platform and a tool. So far, we were using the
platform, called a device context. We introduced the device context class as HDC. The device context is a combination of
the platform on which the drawing is performed and the necessary tools to draw on it.

A pen is a tool used to draw lines and curves on a device context. In the graphics programming, a pen is also used to draw
the borders of a geometric closed shape such as a rectangle or a polygon.

To make it an efficient tool, a pen must produce some characteristics on the lines it is asked to draw. These characteristics
can range from the width of the line drawn to their colors, from the pattern applied to the level of visibility of the lines. To
manage these properties, Microsoft Windows considers two types of pens: cosmetic and geometric.

• A pen is referred to as cosmetic when it can be used to draw only simple lines of a fixed width, less than or equal
to 1 pixel.

• A pen is geometric when it can assume different widths and various ends.

Creating and Selecting a Pen
To create a pen, you can call the CreatePen() function. Its syntax is:

HPEN CreatePen(int fnPenStyle, int nWidth, COLORREF crColor);

The fnPenStyle argument is characteristic is referred to as the style of the pen. The possible values of this argument are:

Value Illustration Description
PS_SOLID A continuous solid line

PS_DASH A continuous line with dashed
interruptions

PS_DOT A line with a dot interruption at
every other pixel

PS_DASHDOT A combination of alternating
dashed and dotted points

PS_DASHDOTDOT A combination of dash and
double dotted interruptions

PS_NULL No visible line

PS_INSIDEFRAME
A line drawn just inside of the
border of a closed shape To specify the type of pen you are

creating, as cosmetic or geometric, use the bitwise OR operator to combine one of the above styles with one of the
following:

• PS_COSMETIC: used to create a cosmetic pen

• PS_GEOMTERIC: used to create a geometric pen

If you are creating a cosmetic pen, you can also add (bitwise OR) the PS_ALTERNATE style to to set the pen at every
other pixel.

127

The nWidth argument is the width used to draw the lines or borders of a closed shape. A cosmetic pen can have a width of
only 1 pixel. If you specify a higher width, it would be ignored. A geometric pen can have a width of 1 or more pixels but
the line can only be solid or null. This means that, if you specify the style as PS_DASH, PS_DOT, PS_DASHDOT
PS_DASHDOTDOT but set a width higher than 1, the line would be drawn as

The default color of pen on the device context is black. If you want to control the color, specify the desired value for the
crColor argument.

After creating a pen, you can select it into the desired device context variable and then use it as you see fit, such as
drawing a rectangle. Here is an example:

#include <windows.h>

LRESULT CALLBACK WindProcedure(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM lParam);

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 WNDCLASSEX WndCls;
 static char szAppName[] = "ExoPen";
 MSG Msg;

 WndCls.cbSize = sizeof(WndCls);
 WndCls.style = CS_OWNDC | CS_VREDRAW | CS_HREDRAW;
 WndCls.lpfnWndProc = WindProcedure;
 WndCls.cbClsExtra = 0;
 WndCls.cbWndExtra = 0;
 WndCls.hInstance = hInstance;
 WndCls.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 WndCls.hCursor = LoadCursor(NULL, IDC_ARROW);
 WndCls.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
 WndCls.lpszMenuName = NULL;
 WndCls.lpszClassName = szAppName;
 WndCls.hIconSm = LoadIcon(hInstance, IDI_APPLICATION);
 RegisterClassEx(&WndCls);

 CreateWindowEx(WS_EX_OVERLAPPEDWINDOW,
 szAppName, "Pens Fundamentals",
 WS_OVERLAPPEDWINDOW | WS_VISIBLE,
 CW_USEDEFAULT, CW_USEDEFAULT, 420, 220,
 NULL, NULL, hInstance, NULL);

 while(GetMessage(&Msg, NULL, 0, 0))
 {
 TranslateMessage(&Msg);
 DispatchMessage(&Msg);
 }

 return static_cast<int>(Msg.wParam);
}

LRESULT CALLBACK WindProcedure(HWND hWnd, UINT Msg,
 WPARAM wParam, LPARAM lParam)
{

128

HDC hDC;
 PAINTSTRUCT Ps;

HPEN hPen;

switch(Msg)
{
case WM_PAINT:
 hDC = BeginPaint(hWnd, &Ps);

 hPen = CreatePen(PS_DASHDOTDOT, 1, RGB(255, 25, 5));
 SelectObject(hDC, hPen);
 Rectangle(hDC, 20, 22, 250, 125);

 EndPaint(hWnd, &Ps);
 break;
case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
}
return 0;

}

Once a pen has been selected, any drawing performed and that uses a pen would use the currently selected pen. If you
want to use a different pen, you can create a new pen. After using a pen, between exiting the function or event that
created it, you should get rid of it and restore the pen that was selected previously. This is done by calling the
DeleteObject() function as follows:

LRESULT CALLBACK WindProcedure(HWND hWnd, UINT Msg,
 WPARAM wParam, LPARAM lParam)
{

HDC hDC;
 PAINTSTRUCT Ps;

HPEN hPen;

switch(Msg)
{
case WM_PAINT:
 hDC = BeginPaint(hWnd, &Ps);

 hPen = CreatePen(PS_DASHDOTDOT, 1, RGB(255, 25, 5));
 SelectObject(hDC, hPen);
 Rectangle(hDC, 20, 22, 250, 125);

129

 DeleteObject(hPen);

 EndPaint(hWnd, &Ps);
 break;
case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);

 }
 return 0;
}

The Win32 API provides the LOGPEN structure that you can use to individually specify each characteristics of a pen. The
LOGPEN structure is defined as follows:

typedef struct tagLOGPEN {
UINT lopnStyle;
POINT lopnWidth;
COLORREF lopnColor;

} LOGPEN, *PLOGPEN;

To use this structure, declare a variable of LOGPEN type or a pointer. Then initialize each member of the structure. If you
do not, its default values would be used and the line not be visible.

The lopnStyle argument follows the same rules we reviewed for the nPenStyle argument of the CreatePen() function.

The lopnWidth argument is provided as a POINT value. Only the POINT::x value is considered.

The lopnColor argument is a color and can be provided following the rules we reviewed for colors.

After initializing the LOGPEN variable, call the CreatePenIndirect() function to create a pen. The syntax of the
CreatePenIndirect() function is:

HPEN CreatePenIndirect(CONST LOGPEN *lplgpn);

The LOGPEN value is passed to this method as a pointer. After this call, the new pen is available and can be selected into
a device context variable for use. Here is an example:

LRESULT CALLBACK WindProcedure(HWND hWnd, UINT Msg,
 WPARAM wParam, LPARAM lParam)
{

HDC hDC;
 PAINTSTRUCT Ps;

HPEN hPen;
 LOGPEN LogPen;

POINT Pt = { 1, 105 };

switch(Msg)
{
case WM_PAINT:

hDC = BeginPaint(hWnd, &Ps);
LogPen.lopnStyle = PS_SOLID;

 LogPen.lopnWidth = Pt;
 LogPen.lopnColor = RGB(235, 115, 5);

 hPen = CreatePenIndirect(&LogPen);

130

 SelectObject(hDC, hPen);

 Ellipse(hDC, 60, 40, 82, 80);
 Ellipse(hDC, 80, 20, 160, 125);
 Ellipse(hDC, 158, 40, 180, 80);

 Ellipse(hDC, 100, 60, 110, 70);
 Ellipse(hDC, 130, 60, 140, 70);
 Ellipse(hDC, 100, 90, 140, 110);

 DeleteObject(hPen);

EndPaint(hWnd, &Ps);
break;

case WM_DESTROY:
PostQuitMessage(WM_QUIT);
break;

default:
return DefWindowProc(hWnd, Msg, wParam, lParam);

}
return 0;

}

Retrieving a Pen
If you want to know the currently selected pen used on a device context, you can call the GetObject() member function.

Brushes

Introduction
A brush is a drawing tool used to fill out closed shapes or the interior of lines. Using a brush is
like picking up a bucket of paint and pouring it somewhere. In the case of computer graphics,
the area where you position the brush is called the brush origin. The color or pattern that the
brush holds would be used to fill the whole area until the brush finds a limit set by some rule.

A brush can be characterized by its color (if used), its pattern used to fill the area, or a
picture (bitmap) used as the brush.

131

Because there can be so many variations of brushes, there are different functions for the
various possible types of brushes you would need. The easiest brush you can create is made
of a color.

Solid Brushes
A brush is referred to as solid if it is made of a color simply used to fill a closed shape. To
create a solid brush, call the CreateSolidBrush() function. Its syntax is:

HBRUSH CreateSolidBrush(COLORREF crColor);

The color to provide as the crColor argument follows the rules we reviewed for colors.

To use the newly created brush, you can select it into the device context by calling the
SelectObject() function. Once this is done. Any closed shape you draw (ellipse, rectangle,
polygon) would be filled with the color specified. After using the brush, you can delete it and
restore the previous brush. Here is an example:

#include <windows.h>

LRESULT CALLBACK WindProcedure(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam);

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 WNDCLASSEX WndCls;
 static char szAppName[] = "ExoBrush";
 MSG Msg;

 WndCls.cbSize = sizeof(WndCls);
 WndCls.style = CS_OWNDC | CS_VREDRAW | CS_HREDRAW;
 WndCls.lpfnWndProc = WindProcedure;
 WndCls.cbClsExtra = 0;
 WndCls.cbWndExtra = 0;
 WndCls.hInstance = hInstance;
 WndCls.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 WndCls.hCursor = LoadCursor(NULL, IDC_ARROW);
 WndCls.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
 WndCls.lpszMenuName = NULL;
 WndCls.lpszClassName = szAppName;
 WndCls.hIconSm = LoadIcon(hInstance, IDI_APPLICATION);
 RegisterClassEx(&WndCls);

 CreateWindowEx(WS_EX_OVERLAPPEDWINDOW,
 szAppName, "GDI Brushes Fundamentals",
 WS_OVERLAPPEDWINDOW | WS_VISIBLE,
 CW_USEDEFAULT, CW_USEDEFAULT, 420, 220,
 NULL, NULL, hInstance, NULL);

 while(GetMessage(&Msg, NULL, 0, 0))
 {
 TranslateMessage(&Msg);
 DispatchMessage(&Msg);
 }

132

 return static_cast<int>(Msg.wParam);
}

LRESULT CALLBACK WindProcedure(HWND hWnd, UINT Msg,
 WPARAM wParam, LPARAM lParam)
{

HDC hDC;
 PAINTSTRUCT Ps;

HBRUSH NewBrush;

switch(Msg)
{
case WM_PAINT:

hDC = BeginPaint(hWnd, &Ps);

 NewBrush = CreateSolidBrush(RGB(250, 25, 5));

 SelectObject(hDC, NewBrush);
 Rectangle(hDC, 20, 20, 250, 125);
 DeleteObject(NewBrush);

EndPaint(hWnd, &Ps);
break;

case WM_DESTROY:
PostQuitMessage(WM_QUIT);
break;

default:
return DefWindowProc(hWnd, Msg, wParam, lParam);

}
return 0;

}

Once a brush has been selected, it would be used on all shapes that are drawn under it, until
you delete or change it. Here is an example:

#include <windows.h>

LRESULT CALLBACK WindProcedure(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam);

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{

133

 WNDCLASSEX WndCls;
 static char szAppName[] = "ExoBrush";
 MSG Msg;

 WndCls.cbSize = sizeof(WndCls);
 WndCls.style = CS_OWNDC | CS_VREDRAW | CS_HREDRAW;
 WndCls.lpfnWndProc = WindProcedure;
 WndCls.cbClsExtra = 0;
 WndCls.cbWndExtra = 0;
 WndCls.hInstance = hInstance;
 WndCls.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 WndCls.hCursor = LoadCursor(NULL, IDC_ARROW);
 WndCls.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
 WndCls.lpszMenuName = NULL;
 WndCls.lpszClassName = szAppName;
 WndCls.hIconSm = LoadIcon(hInstance, IDI_APPLICATION);
 RegisterClassEx(&WndCls);

 CreateWindowEx(WS_EX_OVERLAPPEDWINDOW,
 szAppName, "GDI Brushes Fundamentals",
 WS_OVERLAPPEDWINDOW | WS_VISIBLE,
 CW_USEDEFAULT, CW_USEDEFAULT, 400, 280,
 NULL, NULL, hInstance, NULL);

 while(GetMessage(&Msg, NULL, 0, 0))
 {
 TranslateMessage(&Msg);
 DispatchMessage(&Msg);
 }

 return static_cast<int>(Msg.wParam);
}

LRESULT CALLBACK WindProcedure(HWND hWnd, UINT Msg,
 WPARAM wParam, LPARAM lParam)
{

HDC hDC;
 PAINTSTRUCT Ps;

HBRUSH NewBrush;
 POINT Pt[3];

switch(Msg)
{
case WM_PAINT:

hDC = BeginPaint(hWnd, &Ps);

NewBrush = CreateSolidBrush(RGB(255, 2, 5));
 SelectObject(hDC, NewBrush);

 // Top Triangle
 Pt[0].x = 125; Pt[0].y = 10;
 Pt[1].x = 95; Pt[1].y = 70;
 Pt[2].x = 155; Pt[2].y = 70;

 Polygon(hDC, Pt, 3);

134

 // Left Triangle
 Pt[0].x = 80; Pt[0].y = 80;
 Pt[1].x = 20; Pt[1].y = 110;
 Pt[2].x = 80; Pt[2].y = 140;

 Polygon(hDC, Pt, 3);

 // Bottom Triangle
 Pt[0].x = 95; Pt[0].y = 155;
 Pt[1].x = 125; Pt[1].y = 215;
 Pt[2].x = 155; Pt[2].y = 155;

 Polygon(hDC, Pt, 3);

 // Right Triangle
 Pt[0].x = 170; Pt[0].y = 80;
 Pt[1].x = 170; Pt[1].y = 140;
 Pt[2].x = 230; Pt[2].y = 110;

 Polygon(hDC, Pt, 3);

 DeleteObject(NewBrush);

EndPaint(hWnd, &Ps);
break;

case WM_DESTROY:
PostQuitMessage(WM_QUIT);
break;

default:
return DefWindowProc(hWnd, Msg, wParam, lParam);

}
return 0;

}

If you want to use a different brush, you should create a new one. Here is an example:

LRESULT CALLBACK WindProcedure(HWND hWnd, UINT Msg,

135

 WPARAM wParam, LPARAM lParam)
{

HDC hDC;
 PAINTSTRUCT Ps;

HBRUSH BrushGreen = CreateSolidBrush(RGB(0, 125, 5));
 HBRUSH BrushRed = CreateSolidBrush(RGB(255, 2, 5));
 HBRUSH BrushYellow = CreateSolidBrush(RGB(250, 255, 5));
 HBRUSH BrushBlue = CreateSolidBrush(RGB(0, 2, 255));

 POINT Pt[3];

switch(Msg)
{
case WM_PAINT:

hDC = BeginPaint(hWnd, &Ps);

 // Top Triangle
 Pt[0].x = 125; Pt[0].y = 10;
 Pt[1].x = 95; Pt[1].y = 70;
 Pt[2].x = 155; Pt[2].y = 70;

 SelectObject(hDC, BrushGreen);
 Polygon(hDC, Pt, 3);

 // Left Triangle
 Pt[0].x = 80; Pt[0].y = 80;
 Pt[1].x = 20; Pt[1].y = 110;
 Pt[2].x = 80; Pt[2].y = 140;

 SelectObject(hDC, BrushRed);
 Polygon(hDC, Pt, 3);

 // Bottom Triangle
 Pt[0].x = 95; Pt[0].y = 155;
 Pt[1].x = 125; Pt[1].y = 215;
 Pt[2].x = 155; Pt[2].y = 155;

 SelectObject(hDC, BrushYellow);
 Polygon(hDC, Pt, 3);

 // Right Triangle
 Pt[0].x = 170; Pt[0].y = 80;
 Pt[1].x = 170; Pt[1].y = 140;
 Pt[2].x = 230; Pt[2].y = 110;

 SelectObject(hDC, BrushBlue);
 Polygon(hDC, Pt, 3);

 DeleteObject(BrushGreen);
 DeleteObject(BrushRed);
 DeleteObject(BrushYellow);
 DeleteObject(BrushBlue);

EndPaint(hWnd, &Ps);
break;

case WM_DESTROY:
PostQuitMessage(WM_QUIT);

136

break;
default:

return DefWindowProc(hWnd, Msg, wParam, lParam);
}
return 0;

}

Hatched Brushes
A hatch brush is one that uses a drawn hatch pattern to regularly fill an area. Microsoft
Windows provides 6 preset patterns for such a brush. To create a hatched brush, you can call
the CreateHatchBrush() function. Its syntax is:

HBRUSH CreateHatchBrush(int fnStyle, COLORREF clrref);

The fnStyle argument specifies the hatch style that must be used to fill the area. The possible
values to use are HS_BDIAGONAL, HS_CROSS, HS_DIAGCROSS, HS_FDIAGONAL,
HS_HORIZONTAL, or HS_VERTICAL.

The clrref argument specifies the color applied on the drawn pattern.

Here is an example:

#include <windows.h>

LRESULT CALLBACK WindProcedure(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam);

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 WNDCLASSEX WndCls;
 static char szAppName[] = "ExoBrush";
 MSG Msg;

 WndCls.cbSize = sizeof(WndCls);
 WndCls.style = CS_OWNDC | CS_VREDRAW | CS_HREDRAW;
 WndCls.lpfnWndProc = WindProcedure;
 WndCls.cbClsExtra = 0;

137

 WndCls.cbWndExtra = 0;
 WndCls.hInstance = hInstance;
 WndCls.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 WndCls.hCursor = LoadCursor(NULL, IDC_ARROW);
 WndCls.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
 WndCls.lpszMenuName = NULL;
 WndCls.lpszClassName = szAppName;
 WndCls.hIconSm = LoadIcon(hInstance, IDI_APPLICATION);
 RegisterClassEx(&WndCls);

 CreateWindowEx(WS_EX_OVERLAPPEDWINDOW,
 szAppName, "Hatch Brushes",
 WS_OVERLAPPEDWINDOW | WS_VISIBLE,
 CW_USEDEFAULT, CW_USEDEFAULT, 520, 230,
 NULL, NULL, hInstance, NULL);

 while(GetMessage(&Msg, NULL, 0, 0))
 {
 TranslateMessage(&Msg);
 DispatchMessage(&Msg);
 }

 return static_cast<int>(Msg.wParam);
}

LRESULT CALLBACK WindProcedure(HWND hWnd, UINT Msg,
 WPARAM wParam, LPARAM lParam)
{
 HDC hDC;
 PAINTSTRUCT Ps;
 HBRUSH brBDiagonal = CreateHatchBrush(HS_BDIAGONAL, RGB(0, 0, 255));
 HBRUSH brCross = CreateHatchBrush(HS_CROSS, RGB(200, 0, 0));
 HBRUSH brDiagCross = CreateHatchBrush(HS_DIAGCROSS, RGB(0, 128, 0));
 HBRUSH brFDiagonal = CreateHatchBrush(HS_FDIAGONAL, RGB(0, 128, 192));
 HBRUSH brHorizontal = CreateHatchBrush(HS_HORIZONTAL, RGB(255, 128, 0));
 HBRUSH brVertical = CreateHatchBrush(HS_VERTICAL, RGB(255, 0, 255));

switch(Msg)
{
case WM_PAINT:

hDC = BeginPaint(hWnd, &Ps);

 SelectObject(hDC, brBDiagonal);
 RoundRect(hDC, 20, 30, 160, 80, 10, 10);

 SelectObject(hDC, brFDiagonal);
 RoundRect(hDC, 180, 30, 320, 80, 10, 10);

 SelectObject(hDC, brDiagCross);
 RoundRect(hDC, 340, 30, 480, 80, 10, 10);

 SelectObject(hDC, brVertical);
 RoundRect(hDC, 20, 120, 160, 170, 10, 10);

 SelectObject(hDC, brHorizontal);
 RoundRect(hDC, 180, 120, 320, 170, 10, 10);

138

 SelectObject(hDC, brCross);
 RoundRect(hDC, 340, 120, 480, 170, 10, 10);

 SetTextColor(hDC, RGB(0, 0, 255));
 TextOut(hDC, 40, 10, "HS_BDIAGONAL", 12);
 SetTextColor(hDC, RGB(0, 128, 192));
 TextOut(hDC, 205, 10, "HS_FDIAGONAL", 12);
 SetTextColor(hDC, RGB(0, 128, 0));
 TextOut(hDC, 355, 10, "HS_DIAGCROSS", 12);
 SetTextColor(hDC, RGB(255, 0, 255));
 TextOut(hDC, 44, 100, "HS_VERTICAL", 11);
 SetTextColor(hDC, RGB(255, 128, 0));
 TextOut(hDC, 195, 100, "HS_HORIZONTAL", 13);
 SetTextColor(hDC, RGB(200, 0, 0));
 TextOut(hDC, 370, 100, "HS_CROSS", 8);

 DeleteObject(brBDiagonal);
 DeleteObject(brCross);
 DeleteObject(brDiagCross);
 DeleteObject(brFDiagonal);
 DeleteObject(brHorizontal);
 DeleteObject(brVertical);

EndPaint(hWnd, &Ps);
break;

case WM_DESTROY:
PostQuitMessage(WM_QUIT);
break;

default:
return DefWindowProc(hWnd, Msg, wParam, lParam);

}
return 0;

}

Patterned Brushes
A pattern brush is one that uses a bitmap or (small) picture to fill out an area. To create DDB
bitmap, you can first create an array of WORD values. Then call the CreateBitmap() function
to initialize it. As this makes the bitmap ready, call the CreatePatternBrush() function to
initialize the brush. The syntax of this function is:

139

HBRUSH CreatePatternBrush(HBITMAP hbmp);

Once the brush has been defined, you can select it into a device context and use it as you see
fit. For example, you can use it to fill a shape. Here is an example:

LRESULT CALLBACK WindProcedure(HWND hWnd, UINT Msg,
 WPARAM wParam, LPARAM lParam)
{

HDC hDC;
 PAINTSTRUCT Ps;

HBITMAP BmpBrush;
HBRUSH brBits;
WORD wBits[] = { 0x00, 0x22, 0x44, 0x88, 0x00, 0x22, 0x44,

0x88,
 0x22, 0x44, 0x88, 0x00, 0x22, 0x44, 0x88, 0x00,
 0x44, 0x88, 0x00, 0x22, 0x44, 0x88, 0x00, 0x22,
 0x88, 0x00, 0x22, 0x44, 0x88, 0x00, 0x22, 0x44 };

switch(Msg)
{
case WM_PAINT:

hDC = BeginPaint(hWnd, &Ps);

 BmpBrush = CreateBitmap(32, 32, 1, 1, wBits);
 brBits = CreatePatternBrush(BmpBrush);

 SelectObject(hDC, brBits);

 Rectangle(hDC, 20, 20, 280, 180);

 DeleteObject(BmpBrush);

EndPaint(hWnd, &Ps);
break;

case WM_DESTROY:
PostQuitMessage(WM_QUIT);
break;

default:
return DefWindowProc(hWnd, Msg, wParam, lParam);

}
return 0;

}

140

Another technique you can use to create a pattern brush consists of using a bitmap resource.
Before creating a pattern, you must first have a picture, which can be done by creating a
bitmap. For example, imagine you create the following bitmap identified as IDB_PATTERN:

To create a brush based on a bitmap, you can first load the bitmap either using LoadBitmap()
or CreateBitmap(). Once the bitmap is ready, call the CreatePatternBrush() function to
initialize it. This will allow you to get an HBRUSH that you can then select into the device
context and use it as you see fit.

Here is an example:

#include <windows.h>
#include "resource.h"

HINSTANCE hInst;
LRESULT CALLBACK WindProcedure(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam);

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 WNDCLASSEX WndCls;
 static char szAppName[] = "ExoBrush";

141

 MSG Msg;

hInst = hInstance;
 WndCls.cbSize = sizeof(WndCls);
 WndCls.style = CS_OWNDC | CS_VREDRAW | CS_HREDRAW;
 WndCls.lpfnWndProc = WindProcedure;
 WndCls.cbClsExtra = 0;
 WndCls.cbWndExtra = 0;
 WndCls.hInstance = hInst;
 WndCls.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 WndCls.hCursor = LoadCursor(NULL, IDC_ARROW);
 WndCls.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
 WndCls.lpszMenuName = NULL;
 WndCls.lpszClassName = szAppName;
 WndCls.hIconSm = LoadIcon(hInstance, IDI_APPLICATION);
 RegisterClassEx(&WndCls);

 CreateWindowEx(WS_EX_OVERLAPPEDWINDOW,
 szAppName, "Pattern Brushes",
 WS_OVERLAPPEDWINDOW | WS_VISIBLE,
 CW_USEDEFAULT, CW_USEDEFAULT, 500, 240,
 NULL, NULL, hInstance, NULL);

 while(GetMessage(&Msg, NULL, 0, 0))
 {
 TranslateMessage(&Msg);
 DispatchMessage(&Msg);
 }

 return static_cast<int>(Msg.wParam);
}

LRESULT CALLBACK WindProcedure(HWND hWnd, UINT Msg,
 WPARAM wParam, LPARAM lParam)
{

HDC hDC;
 PAINTSTRUCT Ps;

HBITMAP BmpBrush;
HBRUSH brPattern;
HPEN hPen = CreatePen(PS_SOLID, 1, RGB(255, 255, 255));

switch(Msg)
{
case WM_PAINT:

hDC = BeginPaint(hWnd, &Ps);

 BmpBrush = LoadBitmap(hInst, MAKEINTRESOURCE(IDB_PATTERN));
 brPattern = CreatePatternBrush(BmpBrush);

SelectObject(hDC, hPen);
 SelectObject(hDC, brPattern);

 Rectangle(hDC, 5, 3, 380, 280);

DeleteObject(hPen);
 DeleteObject(BmpBrush);

142

EndPaint(hWnd, &Ps);
break;

case WM_DESTROY:
PostQuitMessage(WM_QUIT);
break;

default:
return DefWindowProc(hWnd, Msg, wParam, lParam);

}
return 0;

}

You can use this same approach to paint an area with a more sophisticated picture.

Logical Brushes
The Win32 library provides the LOGBRUSH structure that can be used to create a brush by
specifying its characteristics. LOGBRUSH is defined as follows:

typedef struct tagLOGBRUSH {
UINT lbStyle;
COLORREF lbColor;
LONG lbHatch;

} LOGBRUSH, *PLOGBRUSH;

The lbStyle member variable specifies the style applied on the brush.

The lbColor is specified as a COLORREF value.

The lbHatch value represents the hatch pattern used on the brush.

To use this structure, declare and initialize a LOGBRUSH variable. Once the variable is ready,
you can pass it to the CreateBrushIndirect() function. Its syntax is:

HBRUSH CreateBrushIndirect(CONST LOGBRUSH *lplb);

The CreateBrushIndirect() function returns an HBRUSH value that you can select into the
device context and use it as you see fit. Here is an example:

LRESULT CALLBACK WindProcedure(HWND hWnd, UINT Msg,
 WPARAM wParam, LPARAM lParam)
{

HDC hDC;

143

 PAINTSTRUCT Ps;
HBRUSH brLogBrush;

 LOGBRUSH LogBrush;

switch(Msg)
{
case WM_PAINT:
 hDC = BeginPaint(hWnd, &Ps);

 LogBrush.lbStyle = BS_HATCHED;
 LogBrush.lbColor = RGB(255, 0, 255);
 LogBrush.lbHatch = HS_DIAGCROSS;

 brLogBrush = CreateBrushIndirect(&LogBrush);
 SelectObject(hDC, brLogBrush);

 Rectangle(hDC, 20, 12, 250, 175);

 DeleteObject(brLogBrush);

 EndPaint(hWnd, &Ps);
 break;
case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);

 }
 return 0;
}

Win32 Controls - Month Calendar

The Month Calendar Control

144

Introduction

145

The Win32 API provides a control used to select dates on a colorful calendar. The dates used
and the way they display are based on the Regional Settings of the Control Panel. It may also
depend on the operating system:

This convenient control is called Month Calendar. The title bar of the control displays two
buttons and two labels. The left button allows the user to select the previous month by clicking
the button. The left label displays the currently selected month. The right label displays the
year of the displayed date. The right button is used to get to the next month.

The calendar can be configured to display more than one month. Here is an example that
displays two months:

If the control is displaying more than one month, the buttons would increment or decrement by
the previous or next month in the list. For example, if the control is displaying April and May, if
the user clicks the left button, the control would display March and April. If the control is
displaying April and May and the user clicks the right button, the control would display May and
June. Also, to select any month of the current year, the user can click the name of the month,
which displays the list of months and this allows the user to click the desired month:

146

Practical Learning: Creating the Application

1. Because Borland C++BuilderX is free, we are going to use it.
Start Borland C++BuilderX and, on the main menu, click File -> New...

2. In the Object Gallery dialog box, click New GUI Application and click OK

3. In the New GUI Application Project Wizard - Step 1 of 3, in the Directory edit box of the
Project Settings section, type the path you want. Otherwise, type
C:\Programs\Win32 Programming

4. In the Name edit box, type MonthCalendar

147

http://www.borland.com/cbuilderx/

5. Click Next

6. In the New GUI Application Project Wizard - Step 2 of 3, accept the defaults and click
Next

7. In the New GUI Application Project Wizard - Step 3 of 3, click the check box under Create

8. Select Untitled under the Name column header. Type Exercise to replace the name and
press Tab

148

9. Click Finish

10. To create the resource header file, on the main menu, click File -> New File...

11. In the Create New File dialog box, change the contents of the Name edit box with
resource

12. In the Type combo box, select h

149

13.Click OK

14. In the file, type #define IDD_CONTROLSDLG 101

15. To create the rc resource file, on the main menu of C++BuilderX, click File -> New File...

16. In the Create New File dialog box, change the contents of the Name edit box to
MonthCalendar

17. In the Type combo box, select rc

18.Click OK

19. In the empty file, type the following (the referenced header file will be created next):

20.

#include "resource.h"

IDD_CONTROLSDLG DIALOG 260, 200, 260, 150
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Windows Controls"
FONT 8, "MS Shell Dlg"
BEGIN
 DEFPUSHBUTTON "Close", IDCANCEL, 202,14,50,14
END

In the left frame, double-click Exercise.cpp and change the file to the following:

21.

150

http://www.functionx.com/win32/controls/monthcalendar.htm

#include <windows.h>
#ifdef __BORLANDC__
 #pragma argsused
#endif

#include "resource.h"
//---

HWND hWnd;
LRESULT CALLBACK DlgProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam);
//---

int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 DialogBox(hInstance, MAKEINTRESOURCE(IDD_CONTROLSDLG),
 hWnd, reinterpret_cast<DLGPROC>(DlgProc));

 return 0;
}
//---

LRESULT CALLBACK DlgProc(HWND hWndDlg, UINT Msg, WPARAM wParam, LPARAM
lParam)
{
 switch(Msg)
 {
 case WM_INITDIALOG:
 return TRUE;

 case WM_COMMAND:
 switch(wParam)
 {
 case IDCANCEL:
 EndDialog(hWndDlg, 0);
 return TRUE;
 }
 break;
 }

 return FALSE;
}
//---

Press F9 to test the application

22.Click Close to dismiss the dialog box

Month Calendar Creation

The Month Calendar control is part of the family of Common Controls defined in the
comctl32.dll library. Therefore, before including it in your application, you must register it by
calling the InitCommonControlsEx() function and assign the ICC_DATE_CLASSES value to

151

the INITCOMMONCONTROLSEX::dwICC member variable.

As always, there are two main ways you can create a control. You can use a resource script. If
you use a script, the formula to follow is:

The easiest way to create a combo box is through a resource script. The syntax used to create
the control in a script is:

CONTROL string, id,"SysMonthCal32", style, x, y, width, height

You must start with the CONTROL class to indicate that you are going to create a control from
the Comctl32.dll family of controls.

The string factor can be anything. It is for controls that would need it. The Month Calendar
control doesn't need it. Therefore, you can pass it as an empty string "" or provide any string
you want.

The id is the number used to identify the control in a resource header file.

To indicate that you are creating a Month Calendar control, pass the class name as
SysMonthCal32.

The style and the extended-style factors are used to configure and prepare the behavior of the
combo box.

The x measure is its horizontal location with regards to the control's origin, which is located in
the top left corner of the window that is hosting the combo box

The y factor is the distance from control's origin, which is located in the top left corner of the
window that is hosting the combo box, to the top-left side of the combo box

The width and the height specify the dimensions of the control

Instead of using a script, to create a Month Calendar control, you can use the
CreateWindowEx() function and pass the name of the class as MONTHCAL_CLASS.

Practical Learning: Creating the Control in a Script

1. To include the comctl32.dll library in your project, on the main menu of
C++BuilderX, click Project -> Add Files

2. Navigate to Drive:\C++BuilderX\lib\psdk folder and display its content

152

3. In the right frame, click comctl32.lib

4. Click OK

5. Change the resource.h header file as follows:

#define IDD_CONTROLSDLG 101
#define IDC_MONTHCALENDAR 102

6. Change the MonthCalendar.rc resource script as follows:

#include "resource.h"

IDD_CONTROLSDLG DIALOG 260, 200, 200, 120
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Windows Controls"
FONT 8, "MS Shell Dlg"
BEGIN
 CONTROL "",IDC_MONTHCALENDAR,"SysMonthCal32",
 WS_CHILD | WS_TABSTOP,10,10,118,96
 DEFPUSHBUTTON "Close", IDCANCEL, 140,10,50,14
END

7. Change the Exercise.cpp source file as follows:

#include <windows.h>
#include <commctrl.h>

#ifdef __BORLANDC__
 #pragma argsused

153

#endif

#include "resource.h"
//---

HWND hWnd;
LRESULT CALLBACK DlgProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam);
//---

int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 DialogBox(hInstance, MAKEINTRESOURCE(IDD_CONTROLSDLG),
 hWnd, reinterpret_cast<DLGPROC>(DlgProc));

 INITCOMMONCONTROLSEX InitCtrlEx;

 InitCtrlEx.dwSize = sizeof(INITCOMMONCONTROLSEX);
 InitCtrlEx.dwICC = ICC_PROGRESS_CLASS;
 InitCommonControlsEx(&InitCtrlEx);

 return 0;
}
//---

LRESULT CALLBACK DlgProc(HWND hWndDlg, UINT Msg, WPARAM wParam,
LPARAM lParam)
{
 switch(Msg)
 {
 case WM_INITDIALOG:
 return TRUE;

 case WM_COMMAND:
 switch(wParam)
 {
 case IDCANCEL:
 EndDialog(hWndDlg, 0);
 return TRUE;
 }
 break;
 }

 return FALSE;
}
//---

8. Test the application

The Properties of a Month Calendar Control

The Effects of the Control Dimensions

154

After creating a Month Calendar control, it displays the current month and maybe only one
month. To display more than one month, set the width of the control to provide enough space.
Here is an example:

#include "resource.h"

IDD_CONTROLSDLG DIALOG 260, 200, 320, 120
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Windows Controls"
FONT 8, "MS Shell Dlg"
BEGIN
 CONTROL "",IDC_MONTHCALENDAR,"SysMonthCal32",
 WS_CHILD | WS_TABSTOP,10,10,240,96
 DEFPUSHBUTTON "Close", IDCANCEL, 260,10,50,14
END

In the same way, you can increase the height to display many months.

Colors: The Background of the Title Bar

To make it a highly visual object, a calendar uses different colors to represent the background,
week days, the background of the title bar, the text of the title bar, the text of the days of the
previous month, and the text of the days of the subsequent month. Of course, you can
programmatically change these colors. Although any color is allowed in any category, you
should make sure that the calendar is still reasonably appealing and usable.

To change the colors of the Month Calendar control, you can call the MonthCal_SetColor()
function. Its syntax is:

COLORREF MonthCal_SetColor(HWND hwndMC, INT iColor, COLORREF clr);

The first argument is a handle to the Month Calendar control whose color you want to set or
change.

155

By default, the title of the Month Calendar control appears on
top of a blue background. If you want a different color, pass
the iColor argument as MCSC_TITLEBK, and pass the color of
your choice as the clr argument.

 Here is an example:

//--

LRESULT CALLBACK DlgProc(HWND hWndDlg, UINT Msg, WPARAM wParam, LPARAM
lParam)
{
 HWND hWndMonthCal;

 hWndMonthCal = GetDlgItem(hWndDlg, IDC_MONTHCALENDAR);

 switch(Msg)
 {
 case WM_INITDIALOG:
 MonthCal_SetColor(hWndMonthCal, MCSC_TITLEBK, RGB(205, 50, 5));

 return TRUE;

 case WM_COMMAND:
 switch(wParam)
 {
 case IDCANCEL:
 EndDialog(hWndDlg, 0);
 return TRUE;
 }
 break;
 }

 return FALSE;
}
//--

Alternatively, you can send the MCM_SETCOLOR message. The syntax to use would be:

lResult = SendMessage(HWND hWnd, MCM_SETCOLOR, WPARAM wParam, LPARAM lParam);

In this case, pass the wParam argument as MCSC_TITLEBK, and pass the color of your choice
as the lParam argument.

156

Practical Learning: Changing the Background of the Title Bar

1. To set the background color of the title bar, change the procedure as follows:

//---

LRESULT CALLBACK DlgProc(HWND hWndDlg, UINT Msg, WPARAM wParam,
LPARAM lParam)
{
 HWND hWndMonthCal;

 hWndMonthCal = GetDlgItem(hWndDlg, IDC_MONTHCALENDAR);

 switch(Msg)
 {
 case WM_INITDIALOG:
 SendMessage(hWndMonthCal, MCM_SETCOLOR, MCSC_TITLEBK,
RGB(205, 50, 5));

 return TRUE;

 case WM_COMMAND:
 switch(wParam)
 {
 case IDCANCEL:
 EndDialog(hWndDlg, 0);
 return TRUE;
 }
 break;
 }

 return FALSE;
}
//---

2. Test the application

Colors: The Caption of the Title Bar
By default, the labels on the title bar display in a white color. To
change the color used to paint the text of the labels, you can
call the MonthCal_SetColor() macro. Alternatively, you can
send the MCM_SETCOLOR message, pass the wParam
argument as MCSC_TITLETEXT, and pass the color of your
choice as the lParam argument.

The names of weekdays use the same color as the color set
when passing the MCSC_TITLETEXT value as the wParam or
the iColor argument.

Under the names of the week, there is a horizontal line used as
the separator. By default, this line separator is painted in black
but it uses the same color as the numeric values of the days of
the selected month.

157

Practical Learning: Changing the Color of the Title Bar Caption

1. To set the background color of the title bar, change the procedure as follows:

//---

LRESULT CALLBACK DlgProc(HWND hWndDlg, UINT Msg, WPARAM wParam,
LPARAM lParam)
{
 HWND hWndMonthCal;

 hWndMonthCal = GetDlgItem(hWndDlg, IDC_MONTHCALENDAR);

 switch(Msg)
 {
 case WM_INITDIALOG:
 SendMessage(hWndMonthCal, MCM_SETCOLOR, MCSC_TITLEBK,
RGB(205, 50, 5));
 MonthCal_SetColor(hWndMonthCal, MCSC_TITLETEXT, RGB(255,
250, 5));

 return TRUE;

 case WM_COMMAND:
 switch(wParam)
 {
 case IDCANCEL:
 EndDialog(hWndDlg, 0);
 return TRUE;
 }
 break;
 }

 return FALSE;
}
//---

2. Test the application

Colors: The Caption of the Title Bar

Under the names of the week and their line separator, the numeric days of the month are
listed. These days display in a different color. To specify the color of the days of the current
month, you can call the MonthCal_SetColor() macro or send a MCSC_TEXT message. Pass
the iColor or the wParam as MCSC_TEXT and pass the color of your choice as the lParam or
the Clr argument.

Practical Learning: Changing the Color of the Current Month Days

158

1. To set the background color of the title bar, change the procedure as follows:

//---

LRESULT CALLBACK DlgProc(HWND hWndDlg, UINT Msg, WPARAM wParam,
LPARAM lParam)
{
 HWND hWndMonthCal;

 hWndMonthCal = GetDlgItem(hWndDlg, IDC_MONTHCALENDAR);

 switch(Msg)
 {
 case WM_INITDIALOG:
 SendMessage(hWndMonthCal, MCM_SETCOLOR, MCSC_TITLEBK,
RGB(205, 50, 5));
 MonthCal_SetColor(hWndMonthCal, MCSC_TITLETEXT, RGB(255,
250, 5));
 MonthCal_SetColor(hWndMonthCal, MCSC_TEXT, RGB(128, 0,
5));

 return TRUE;

 case WM_COMMAND:
 switch(wParam)
 {
 case IDCANCEL:
 EndDialog(hWndDlg, 0);
 return TRUE;
 }
 break;
 }

 return FALSE;
}
//---

2. Test the application

Colors: Days of the Trailing Months

159

The numbers of the days of the
month display in two colors.
The real days of the selected
month display, by default, in a
black color as the WindowText
system color. To change the
color of the days of the other
months, you can call the
MonthCal_SetColor() macro,
pass the iColor argument as
MCSC_TRAILINGTEXT, and
pass the color of your choice as
the clr argument. Alternatively,
you can send the
MCM_SETCOLOR message

Colors: The Body Background

Under the line separator, the numeric days of the month are listed. By default, the numeric
days of the control display above a white background which is the Window system color. To
change the background color of the area where the numeric days appear, you can call the
MonthCal_SetColor() macro or send a MCM_SETCOLOR message, pass the iColor or the
wParam argument as MCSC_MONTHBK, and pass the color of your choice as the Clr or the
lParam argument.

Today's Effect

The Month Calendar control is used to let the user know today's date in two ways. On the
calendar, today's date is circled by a hand-drawn ellipse. In the bottom section of the calendar,
today's date is also displayed as a sentence:

To programmatically hide the today label, you can apply the MCS_NOTODAY style. Here is an
example:

#include <commctrl.h>
#include "resource.h"

IDD_CONTROLSDLG DIALOG 260, 200, 200, 120
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Windows Controls"
FONT 8, "MS Shell Dlg"
BEGIN

160

 CONTROL "",IDC_MONTHCALENDAR,"SysMonthCal32",
 WS_CHILD | WS_TABSTOP | MCS_NOTODAY |
MCS_NOTODAY,10,10,118,96
 DEFPUSHBUTTON "Close", IDCANCEL, 140,10,50,14
END

We also mentioned that today date appears with a circle. If you want to hide just the circle,
apply the MCS_NOTODAYCIRCLE style:

#include <commctrl.h>
#include "resource.h"

IDD_CONTROLSDLG DIALOG 260, 200, 200, 120
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Windows Controls"
FONT 8, "MS Shell Dlg"
BEGIN
 CONTROL "",IDC_MONTHCALENDAR,"SysMonthCal32",
 WS_CHILD | WS_TABSTOP | MCS_NOTODAY |
 MCS_NOTODAY | MCS_NOTODAYCIRCLE,10,10,118,96
 DEFPUSHBUTTON "Close", IDCANCEL, 140,10,50,14
END

As you may know already, to programmatically change the style of a control, for example to
show or hide the today label, you can call the SetWindowLong() function.

161

The First Day of the Week

Under the title bar, the short names of week days display, using the format set in Control Panel.
In US English, the first day is Sunday. If you want to start with a different day, you can call the
MonthCal_SetFirstDayOfWeek() macro. Its syntax is:

DWORD MonthCal_SetFirstDayOfWeek(HWND hwndMC, INT iDay);

Alternatively, you can send the MCM_SETFIRSTDAYOFWEEK message using the following
syntax:

lResult = SendMessage(HWND hWndControl, MCM_SETFIRSTDAYOFWEEK, WPARAM wParam,
LPARAM lParam);

The first argument is the handle to the Month Calendar control whose first day you want to set.

The wParam argument is not used and can be passed as 0.

The iDay or the lParam argument is a constant integer of the following values:

Value Weekday

0 Monday

1 Tuesday

2 Wednesday

3 Thursday

4 Friday

5 Saturday

6 Sunday

If the calendar is already functioning, to find what its first day of the week is, you can call the
MonthCal_GetFirstDayOfWeek() macro. Its syntax is:

DWORD MonthCal_GetFirstDayOfWeek(HWND hWndMC);

To get the same information, you can send an MCM_GETFIRSTDAYOFWEEK message.
Neither the wParam nor the lParam argument is used. Therefore, they must be passed as 0.

Both the MonthCal_GetFirstDayOfWeek() macro and the SendMessage() function that
carries the MCM_GETFIRSTDAYOFWEEK message returns a value of the above table.

The Selected Day

At any time, a particular date is selected and has an ellipse with the same color as the
background of the title bar. By default, the selected date is today's date. When the user clicks
the calendar, a date is selected. You also can programmatically select a day. To do this, you can
call the MonthCal_SetCurSel() macro whose syntax is:

BOOL MonthCal_SetCurSel(HWND hwndMC, LPSYSTEMTIME lpSysTime);

Alternatively, you can send a MCM_SETCURSEL message. The syntax used is:

lResult = SendMessage(HWND hWndControl, MCM_SETCURSEL, WPARAM wParam, LPARAM
lParam);

162

The wParam argument of the SendMessage() function is not used and can be passed as 0.

The lpSysTime and the lParam arguments are passed as pointers to the Win32's SYSTEMTIME
structure and therefore carry the returning value of the function.

After a day has been selected, whether by you or the user, to find out what day was selected,
you can call the MonthCal_GetCurSel() macro whose syntax is:

BOOL MonthCal_GetCurSel(HWND hwndMC, LPSYSTEMTIME lpSysTime);

To get the same information, you can send a MCM_GETCURSEL message using the following
syntax:

lResult = SendMessage(HWND hWndControl, MCM_GETCURSEL, WPARAM wParam, LPARAM
lParam);

The Multiple Day Selection Option

When the user clicks the Month Calendar control, one date is selected. To control whether the
user can select one or more dates, you can apply the MCS_MULTISELECT style:

#include <commctrl.h>
#include "resource.h"

IDD_CONTROLSDLG DIALOG 260, 200, 200, 120
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Windows Controls"
FONT 8, "MS Shell Dlg"
BEGIN
 CONTROL "",IDC_MONTHCALENDAR,"SysMonthCal32",
 WS_CHILD | WS_TABSTOP | MCS_NOTODAY |
 MCS_NOTODAY | MCS_NOTODAYCIRCLE | MCS_MULTISELECT,
 10,10,118,96
 DEFPUSHBUTTON "Close", IDCANCEL, 140,10,50,14
END

163

With this property set, the user can select many days in the calendar. You also can
programmatically select a range of days. To to this, you can call the
MonthCal_SetSelRange() macro whose syntax is:

BOOL MonthCal_SetSelRange(HWND hwndMC, LPSYSTEMTIME lprgSysTimeArray);

To perform the same operation, you can send a MCM_SETSELRANGE message using the
following syntax:

lResult = SendMessage(HWND hWndControl, MCM_SETSELRANGE, WPARAM wParam, LPARAM
lParam);

After the user has selected a range date on the calendar, to find out what that range is, you
can call the MonthCal_GetSelRange() macro.

As mentioned already, to change the month and subsequently the year of the calendar, the
user can click the buttons continuously. To control the allowable dates the user can navigate
from and to, you can call the MonthCal_SetRange() macro.

Windows Controls: Combo Boxes

Introduction to Combo Boxes

Overview

A combo box is a Windows control made of two sections. There are two main types of combo
boxes: drop down and simple. Each is made of two sections.

The most commonly used combo box is called drop down. On the left side, it is made of an edit
box. On the right side, it is equipped with a down-pointing arrow:

To use it, the user must click the arrow. This opens a list:

164

After locating the desired item in the list, the user can click it. The item clicked becomes the
new one displaying in the edit part of the control. If the user doesn't find the desired item in
the list, he or she can click the down-pointing arrow or press Esc. This hides the list and the
control displays as before. The user can also display the list by giving focus to the control and
then pressing Alt + down arrow key.

The second general type of combo box is referred to as simple. This type is also made of two
sections but, instead of a down-pointing arrow used to display the list, it shows its list all the
time:

This time, to select an item, the user can simply locate it in the list and click it.

165

In both types of combo boxes, if the list is too long for the allocated space, when it displays,
the list part is equipped with a vertical scroll bar. This allows the user to navigate up and down
in the list to locate the desired item:

Practical Learning: Creating the Application

1. Because Borland C++BuilderX is free, we are going to use it.
Start Borland C++Builde X and, on the main menu, click File -> New...

166

http://www.borland.com/cbuilderx/

2. In the Object Gallery dialog box, click New GUI Application and click OK

3. In the New GUI Application Project Wizard - Step 1 of 3, in the Directory edit box of the
Project Settings section, type the path you want. Otherwise, type
C:\Programs\Win32 Programming

4. In the Name edit box, type ComboBox1

167

5. Click Next

6. In the New GUI Application Project Wizard - Step 2 of 3, accept the defaults and click
Next

7. In the New GUI Application Project Wizard - Step 3 of 3, click the check box under Create

8. Select Untitled under the Name column header. Type Exercise to replace the name and
press Tab

168

9. Click Finish

10. To create the resource header file, on the main menu, click File -> New File...

11. In the Create New File dialog box, change the contents of the Name edit box with
resource

12. In the Type combo box, select h

169

13.Click OK

14. In the file, type #define IDD_CONTROLSDLG 101

15. To create the rc resource file, on the main menu of C++BuilderX, click File -> New File...

16. In the Create New File dialog box, change the contents of the Name edit box to Controls

17. In the Type combo box, select rc

18.Click OK

19. In the empty file, type the following (the referenced header file will be created next):

20.

#include "resource.h"

IDD_CONTROLSDLG DIALOG 260, 200, 180, 120
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Windows Controls"
FONT 8, "MS Shell Dlg"
BEGIN
 DEFPUSHBUTTON "Close", IDCANCEL, 120, 100, 50, 14
END

In the left frame, double-click Exercise.cpp and change the file to the following:

170

21.

#include <windows.h>
#ifdef __BORLANDC__
 #pragma argsused
#endif

#include "resource.h"
//---

HWND hWnd;
LRESULT CALLBACK DlgProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam);
//---

int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 DialogBox(hInstance, MAKEINTRESOURCE(IDD_CONTROLSDLG),
 hWnd, reinterpret_cast<DLGPROC>(DlgProc));

 return 0;
}
//---

LRESULT CALLBACK DlgProc(HWND hWndDlg, UINT Msg, WPARAM wParam,
LPARAM lParam)
{
 switch(Msg)
 {
 case WM_INITDIALOG:
 return TRUE;

 case WM_COMMAND:
 switch(wParam)
 {
 case IDCANCEL:
 EndDialog(hWndDlg, 0);
 return TRUE;
 }
 break;
 }

 return FALSE;
}
//---

Press F9 to test the application

171

22.Click Close to dismiss the dialog box

Creating a Combo Box

Three are two main ways you can create a combo box. You can write code or use a script. To
create a combo box with code, you can first create a Windows class that defines an HWND
handle and implements the assignments of a combo box.

The easiest way to create a combo box is through a resource script. The syntax used to create
the control in a script is:

COMBOBOX id, x, y, width, height [, style [, extended-style]]

You must specify COMBOBOX as the class of this control

The id is the number used to identify the control in a resource header file

The x measure is its horizontal location with regards to the control's origin, which is located in
the top left corner of the window that is hosting the combo box

The y factor is the distance from control's origin, which is located in the top left corner of the
window that is hosting the combo box, to the top-left side of the combo box

The width and the height specify the dimensions of the combo box

The optional style and the extended-style factors are used to configure and prepare the
behavior of the combo box.

Practical Learning: Creating a Combo Box

1. To create an identifier for the combo box, open the resource header file and modify it as
follows:

2.
#define IDD_CONTROLSDLG 101
#define IDD_SIZE_CBO 102

172

To create the combo box, open the resource script and change it as follows:

3.

#include "resource.h"

IDD_CONTROLSDLG DIALOG 260, 200, 180, 120
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Windows Controls"
FONT 8, "MS Shell Dlg"
BEGIN
 DEFPUSHBUTTON "Close", IDCANCEL, 120, 100, 50, 14
 COMBOBOX IDD_SIZE_CBO, 40, 8, 90, 80
END

Test the application

4. Click Close to dismiss the dialog box

Characteristics of a Combo Box

Windows Styles of a Combo Box

Like all the other windows, to create a combo box programmatically, you can call the
CreateWindow() or the CreateWindowEx() function. The syntax used is:

HWND CreateWindow("COMBOBOX",
 "Default String",
 style,
 x,
 y,
 width,
 height,
 parent,
 menu,
 instance,
 Optional Parameter
);

HWND CreateWindowEx(Extended Style,
 "COMBOBOX",
 "Default String",
 style,
 x,
 y,
 width,
 height,
 parent,
 menu,
 instance,
 Optional Parameter
);

173

The first argument of the CreateWindow() or the second argument of the
CreateWindowEx() functions must be COMBOBOX passed as a string.

The second argument of the CreateWindow() or the third argument of the
CreateWindowEx() functions specifies a string that would display in the edit part of the
combo box when the control appears. If the control is created with certain styles we will review
here, this string would not appear even if you specify it. You can also omit it and pass the
argument as NULL or "" since there are other ways you can set the default string.

Like every other Windows control, a combo box' appearance and behavior are controlled by a
set of properties called styles . The primary properties of a combo box are those controlled by
the operating system and shared by all controls. You can use them to set the visibility,
availability, and parenthood, etc, of the combo box. If you create a combo box using a resource
script, since you would include it in a DIALOG section of the script, the dialog box is
automatically made its parent. Otherwise, to specify that the combo box is hosted by another
control, get the handle of the host and pass it as the parent parameter. You must also set or
add the WS_CHILD bit value to the style parameter. If you want the combo box to appear
when its parent comes up, add the WS_VISIBLE style using the bitwise | operator.

If you want the combo box to receive focus as a result of the user pressing the Tab key, add
the WS_TABSTOP style.

The location of a combo box is specified by the x and y parameters whose values are based on
the origin, located in the top-left corner or the dialog box or the window that is hosting the
combo box.

Practical Learning: Programmatically Creating a Combo Box

1. To programmatically create a combo box, modify the Exercise.cpp file as follows:

174

2.

#include <windows.h>
#ifdef __BORLANDC__
 #pragma argsused
#endif

#include "resource.h"
//---

HWND hWnd;
HWND hWndComboBox;
HINSTANCE hInst;
LRESULT CALLBACK DlgProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam);
//---

int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 hInst = hInstance;

 DialogBox(hInstance, MAKEINTRESOURCE(IDD_CONTROLSDLG),
 hWnd, reinterpret_cast<DLGPROC>(DlgProc));

 return 0;
}
//---

LRESULT CALLBACK DlgProc(HWND hWndDlg, UINT Msg, WPARAM wParam,
LPARAM lParam)
{
 switch(Msg)
 {
 case WM_INITDIALOG:
 hWndComboBox = CreateWindow("COMBOBOX",
 NULL,
 WS_CHILD | WS_VISIBLE |
WS_TABSTOP,
 60, 62, 136, 60,
 hWndDlg,
 NULL,
 hInst,
 NULL);

 if(!hWndComboBox)
 {
 MessageBox(hWndDlg,
 "Could not create the combo box",
 "Failed Control Creation",
 MB_OK);
 return FALSE;
 }
 return TRUE;

 case WM_COMMAND:
 switch(wParam)
 {
 case IDCANCEL:

175

Categories of a Combo Box

As mentioned already, there are two big categories of combo boxes: simple and drop down.
The category is specified by the style of the control. By default, that is, if you don't specify a
category, the combo box is created as simple, as you can see on the above screen shot.
Otherwise, the style of the simple combo box is CBS_SIMPLE. To create a combo box that
display a down-pointing arrow and displays its list only when requested, add the
CBS_DROPDOWN instead. Here is an example:

CreateWindow("COMBOBOX",
 NULL,
 WS_CHILD | WS_VISIBLE | WS_TABSTOP | CBS_DROPDOWN,
 60, 62, 136, 60,
 hWndDlg,
 NULL,
 hInst,
 NULL);

Don't use both styles on the same combo box.

A combo box as a Windows control presents many other styles. Most of these styles are related
to operations performed on the control. For this reason, we will review them when the relations
operations are addressed.

Practical Learning: Using Combo Box Styles

1. To make the combo box drop down, open the resource script and change it as
follows:

#include "resource.h"

IDD_CONTROLSDLG DIALOG 260, 200, 180, 120
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Windows Controls"
FONT 8, "MS Shell Dlg"
BEGIN
 DEFPUSHBUTTON "Close", IDCANCEL, 120, 100, 50, 14
 COMBOBOX IDD_SIZE_CBO, 40, 8, 90, 60, WS_TABSTOP |
CBS_DROPDOWN
END

176

2. Test the application

3. Close it and return to your programming environment

Operations on Combo Boxes

Creation-Related Messages

When creating the combo boxes above, we specified their location through x and y followed by
their dimensions through the width and the height. If a combo box has already been created
and you want to get its coordinates, you can send the CB_GETDROPPEDCONTROLRECT
message in the SendMessage() function. The third argument, wParam, is not used. The
fourth argument, lParam, carries a RECT pointer that will return the coordinates of the combo
box.

Adding Items to the List

After creating a combo box, the first operation that probably comes in mind is to fill it with
items the user would select from. On this issue, there are two types of lists used on combo
boxes: regular or owner-draw.

A regular list of a combo box displays a normal list of strings. This is the simplest. To create a
string to add to the list, you can call the SendMessage() function passing the second
argument as CB_ADDSTRING. The syntax used is:

lResult = SendMessage((HWND) hWndControl,
 (UINT) CB_ADDSTRING,
 (WPARAM) wParam,
 (LPARAM) lParam);

The third argument is not used. The fourth argument is the string that will be added to the
control. Here are examples:

//--

LRESULT CALLBACK DlgProc(HWND hWndDlg, UINT Msg, WPARAM wParam, LPARAM
lParam)
{

177

 const char *ComboBoxItems[] = { "Sri Lanka", "El Salvador", "Botswana",
 "France", "Cuba" };
 switch(Msg)
 {
 case WM_INITDIALOG:
 hWndComboBox = CreateWindow("COMBOBOX",
 NULL,
 WS_CHILD | WS_VISIBLE,
 60, 62, 136, 60,
 hWndDlg,
 NULL,
 hInst,
 NULL);

 if(!hWndComboBox)
 {
 MessageBox(hWndDlg,
 "Could not create the combo box",
 "Failed Control Creation",
 MB_OK);
 return FALSE;
 }

 SendMessage(hWndComboBox,
 CB_ADDSTRING,
 0,
 reinterpret_cast<LPARAM>((LPCTSTR)ComboBoxItems[0]
));
 SendMessage(hWndComboBox,
 CB_ADDSTRING,
 0,
 reinterpret_cast<LPARAM>((LPCTSTR)ComboBoxItems[1]
));
 SendMessage(hWndComboBox,
 CB_ADDSTRING,
 0,
 reinterpret_cast<LPARAM>((LPCTSTR)ComboBoxItems[2]
));
 SendMessage(hWndComboBox,
 CB_ADDSTRING,
 0,
 reinterpret_cast<LPARAM>((LPCTSTR)ComboBoxItems[3]
));
 SendMessage(hWndComboBox,
 CB_ADDSTRING,
 0,
 reinterpret_cast<LPARAM>((LPCTSTR)ComboBoxItems[4]
));

 return TRUE;

 case WM_COMMAND:
 switch(wParam)
 {
 case IDCANCEL:
 EndDialog(hWndDlg, 0);

178

 return TRUE;
 }
 break;
 }

 return FALSE;
}
//--

If the adding operation succeeds, the SendMessage() function returns the index of the item
that was added. If it fails, it returns the CB_ERR error.

When a list has been created, if it contains more items than the allocated space can display,
you should provide a way for the user to navigate entirely in the list. This is usually done with a
vertical scroll bar. To equip a combo box with a vertical scroll bar, add the WS_VSCROLL value
to its list of styles. If you add this style but the list is not too long, the scroll bar would not
display. If you insist on displaying a vertical scroll bar even if the list is not too long, add the
CBS_DISABLENOSCROLL style. If you do this and if the list is short, it would appear with a
disabled vertical scroll bar:

The CB_ADDSTRING message we use above allows us to add a string to the list. You can use
the same message to let the user either create a list or add an item to it.

Practical Learning: Creating the List

1. Change the resource.h header file as follows:

#define IDD_CONTROLSDLG 101
#define IDD_COUNTRIES_CBO 102

2. To add a vertical scroll bar to the first combo box, Add WS_VSCROLL to its style
list in the resource script as follows:

#include "resource.h"

IDD_CONTROLSDLG DIALOG 260, 200, 180, 120
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Windows Controls"

179

FONT 8, "MS Shell Dlg"
BEGIN
 DEFPUSHBUTTON "Close", IDCANCEL, 120, 100, 50, 14
 LTEXT "Country:", IDC_STATIC, 10, 10, 25, 8
 COMBOBOX IDD_COUNTRIES_CBO, 40, 8, 90, 60,
 WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN
END

3. To create the list of items for the combo box, modify the Exercise.cpp file as
follows:

#include <windows.h>
#ifdef __BORLANDC__
 #pragma argsused
#endif

#include "resource.h"
//---

HWND hWnd;
LRESULT CALLBACK DlgProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam);
//---

int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow)
{
 hInst = hInstance;

 DialogBox(hInstance, MAKEINTRESOURCE(IDD_CONTROLSDLG),
 hWnd, reinterpret_cast<DLGPROC>(DlgProc));

 return 0;
}
//---

LRESULT CALLBACK DlgProc(HWND hWndDlg, UINT Msg, WPARAM wParam,
LPARAM lParam)
{
 HWND cboCountries;

 const char *Countries[] = { "Sri Lanka", "El Salvador",
"Botswana",
 "France", "Cuba", "South Africa",
 "Australia", "Russia", "Jamaica",
 "Great Britain", "Senegal", "Bangla
Desh" };

 switch(Msg)
 {
 case WM_INITDIALOG:
 cboCountries = GetDlgItem(hWndDlg, IDD_COUNTRIES_CBO);

 for(int Count = 0; Count < 12; Count++)
 {
 SendMessage(cboCountries,

180

 CB_ADDSTRING,
 0,
 reinterpret_cast<LPARAM>((LPCTSTR)Countries[C
ount]));
 }

 return TRUE;

 case WM_COMMAND:
 switch(wParam)
 {
 case IDCANCEL:
 EndDialog(hWndDlg, 0);
 return TRUE;
 }
 break;
 }

 return FALSE;
}
//---

4. Test the application

5. Return to your programming environment

Sorting Items in the List

As the items are added to the list of a combo box, they create a C++ type of array indexed so
that the first item of the list has a numeric position of 0, the second is 1, etc. This index will
allow you to perform various operations on items by locating the desired one based on its
index.

The items of a combo box are cumulatively added to the list, that is, in order. If you want to
arrange them in alphabetical order, when creating the combo box, add the CBS_SORT style.
When this style is set, items are automatically and appropriately inserted in the order based on
the language of the computer as set in Control Panel. Therefore, every time you add an item to
the list using the CB_ADDSTRING message, the list is sorted to rearrange it.

181

Removing Items from the List

As opposed to adding an item, if the list already contains strings and you want to remove an
item from the list, call the SendMessage() function, passing the message type as
CB_DELETESTRING and the index of the undesired item as the lParam value.

Here is an example that deletes the fourth item of the list:

SendMessage(cboCountries, CB_DELETESTRING, 3, 0);

If you want to remove all items from the combo box, call the SendMessage() function with
the CB_RESETCONTENT message. The two accompanying arguments, wParam and lParam,
are not used.

Selecting an Item

Once the list of a combo box has been created, the user can click an item in the list to select it.
To select an item in a drop down combo box, the user can click the down-pointing arrow or
press Alt + down arrow key. Any of these actions causes the list of a drop down combo box to
display. You also, as the programmer, can display the list programmatically any time, even if
the user clicks another control. To display the list, you can send a CB_SHOWDROPDOWN
message in the SendMessage() function. The wParam argument carries a TRUE value if you
want to display the list. The lParam argument is not used. Here is an example:

SendMessage(cboCountries, CB_SHOWDROPDOWN, TRUE, 0);

An item that is selected in the list is commonly referred to as the current selection. You also as
the programmer can select an item at any time. For example, after creating the list, you may
want to specify a default item to be shown in the edit part of the control.

To select an item from the list, you can send the CB_SETCURSEL message in the
SendMessage() function. As the items are 0-based, to select a particular item, pass its index
as the wParam parameter. The lpParam argument is not used.

Here is an example that selects the fourth item in the list:

SendMessage(cboCountries, CB_SETCURSEL, 3, 0);

An alternative to selecting a string in the combo box is to send a WM_SETTEXT message to
the combo box using the SendMessage() function. In this case, the wParam argument is not
used. The lParam argument carries the string to select. Here is an example:

SendMessage(cboCountries, WM_SETTEXT, 0, (LPARAM)Countries[5]);

So far, we have mentioned that there were two categories of combo boxes: simple and drop
down. We also saw that the user could click the arrow of a drop down style to display the list.
The drop down version has another characteristic: it allows the user to click the edit part of the
control and start typing. This can let user find a match of a string based on the typed letters.
In some cases, you may want the user to only be able to select an item in the list without
typing it. In this case, the combo box provides the CBS_DROPDOWNLIST style. When this
style has been added, the edit part of the control is disabled or eliminated; it becomes only a
place holder for a selected item.

The Width of a Combo Box

182

When creating our combo boxes, we learned to specify their width. After a combo box has been
created, if you want to find its width, you can call the SendMessage() function with the
CB_GETDROPPEDWIDTH message. Both the wParam and the lParam arguments are not
used. If the SendMessage() function succeeds in its request, it returns the current width of
the combo box.

Sometimes after adding an item to the list, you may find out that it is long than the width of
the combo box can display. Although there are various ways you can resize a control, the
combo box provides its own and (very) easy mechanism to change its width. This can be done
by sending the CB_SETDROPPEDWIDTH message through the SendMessage() function.
The wParam argument is used to specify the new desired width. The lParam argument is not
used.

SendMessage(cboCountries, CB_SETDROPPEDWIDTH, 240, 0);

Getting the Selected Item

At any time, to find out what item has been selected or what item is displaying in the edit part
of the control, you can call the SendMessage() function with the CB_GETCURSEL message.
When the function is called with this message, it checks the combo box first. If an item is
currently selected, it returns it. If no item is selected, this function returns CB_ERR.

An alternative to getting the string that is selected in the combo box is to send the
WM_GETTEXT to the combo box using the SendMessage() function. The wParam is the
length of the string. The lParam argument is the variable into which the string will be copied.

Combo Box Events

List Display Events

When a combo box is created as drop down, in order to select an item from the list, the user
must display the list. This is done either by clicking the down-pointing arrow or by pressing Alt
and the down arrow key (keyboard). However this is done, when the user decides to display
the list, just before the list is displayed, the combo box sends a CBN_DROPDOWN message to
the dialog box or the object that is hosting the combo box. You can do some last minute
processing before the list is displayed. For example, you can intercept this message and
prevent the list from displaying, or you can update it, anything.

Since this message comes from a child control, the dialog box processes it as a
WM_COMMAND message. The combo box that sends this message can be identified using the
low word of the wParam argument of the procedure. In the following example, the message is
intercepted and it is used to let the user know before playing the list:

//--

LRESULT CALLBACK DlgProc(HWND hWndDlg, UINT Msg, WPARAM wParam, LPARAM
lParam)
{
 HWND cboCountries;

 const char *Countries[] = { "Sri Lanka", "El Salvador", "Botswana",

183

 "France", "Cuba", "South Africa",
 "Australia", "Russia", "Jamaica",
 "Great Britain", "Senegal", "Bangla
Desh" };

 switch(Msg)
 {
 case WM_INITDIALOG:
 cboCountries = GetDlgItem(hWndDlg, IDD_COUNTRIES_CBO);

 for(int Count = 0; Count < 12; Count++)
 {
 SendMessage(cboCountries,
 CB_ADDSTRING,
 0,
 reinterpret_cast<LPARAM>((LPCTSTR)Countries[Count]
));
 }

 SendMessage(cboCountries, CB_SETCURSEL, 3, 0);
 break;

 case WM_COMMAND: // Windows Controls processing
 switch(LOWORD(wParam)) // This switch identifies the control
 {
 case IDD_COUNTRIES_CBO: // If the combo box sent the message,
 switch(HIWORD(wParam)) // Find out what message it was
 {
 case CBN_DROPDOWN: // This means that the list is about to
display
 MessageBox(hWndDlg, "A request to display the list has
been made",
 "Display Notification", MB_OK);
 break;
 }
 break;
 case IDCANCEL:
 EndDialog(hWndDlg, 0);
 return TRUE;
 }
 break;
 }

 return FALSE;
}
//--

We have mentioned that, as opposed to the user displaying the list, you also can display it by
sending the CB_SHOWDROPDOWN message. At any time, you can find out whether the list
is currently displaying by sending the CB_GETDROPPEDSTATE message to the combo box.

After the user has finished using the list of a combo box, he or she can close it. This can be
done by selecting an item, clicking the down-pointing arrow, or pressing Esc. In all cases, this
action closes or hides the list and then the combo box sends a CBN_CLOSEUP message to its
parent. Here is an example:

184

//--

LRESULT CALLBACK DlgProc(HWND hWndDlg, UINT Msg, WPARAM wParam, LPARAM
lParam)
{
 HWND cboCountries;

 const char *Countries[] = { "Sri Lanka", "El Salvador", "Botswana",
 "France", "Cuba", "South Africa",
 "Australia", "Russia", "Jamaica",
 "Great Britain", "Senegal", "Bangla
Desh" };

 switch(Msg)
 {
 case WM_INITDIALOG:
 cboCountries = GetDlgItem(hWndDlg, IDD_COUNTRIES_CBO);

 for(int Count = 0; Count < 12; Count++)
 {
 SendMessage(cboCountries,
 CB_ADDSTRING,
 0,
 reinterpret_cast<LPARAM>((LPCTSTR)Countries[Count]
));
 }

 SendMessage(cboCountries, CB_SETCURSEL, 3, 0);
 break;

 case WM_COMMAND: // Windows Controls processing
 switch(LOWORD(wParam)) // This switch identifies the control
 {
 case IDD_COUNTRIES_CBO: // If the combo box sent the message,
 switch(HIWORD(wParam)) // Find out what message it was
 {
 case CBN_DROPDOWN: // This means that the list is about to
display
 MessageBox(hWndDlg, "A request to display the list has
been made",
 "Display Notification", MB_OK);
 break;
 case CBN_CLOSEUP:
 MessageBox(hWndDlg, "The list will be closed",
 "List Close Notification", MB_OK);
 break;
 }
 break;
 case IDCANCEL:
 EndDialog(hWndDlg, 0);
 return TRUE;
 }
 break;
 }

 return FALSE;
}

185

//--

Selection-Related Events

After the user has selected an item from the list, the combo box sends a CBN_SELCHANGE
message to its parent and then the list closes. You can either this event or the CBN_CLOSEUP
related event to find out what the user selected, if any.

If the user displays the list and clicks an item, the list is retracted. If the selection was
successful (sometimes something could go wrong), the combo box sends a CBN_SELENDOK
message. On the other hand, if the user displays the list but doesn't select an item and then
either clicks the down-pointing arrow, clicks somewhere else, or presses Esc, the combo box
lets its parent know that nothing was selected. To do this, it sends a CBN_SELENDCANCEL
message.

Windows Controls: Scroll Bars

Introduction to Scroll Bars

Overview

A scroll bar is an object that allows the user to navigate either left and right or up and down,
either on a document or on a section of the window. A scroll bar appears as a long bar with a
(small) button at each end. Between these buttons, there is a moveable bar called a thumb. To
scroll, the user can click one of the buttons or grab the thumb and drag it:

Types of Scroll Bars

186

There are two types of scroll bars: vertical or horizontal. A vertical scroll bar allows the user to
navigate up and down on a document or a section of a window. A horizontal scroll bar allows
the user to navigate left and right on a document or a section of a window.

As far as Microsoft Windows is concerned, there are two categories of scroll bars: automatic
and control-based.

Practical Learning: Introducing Scroll Bars

187

http://www.functionx.com/win32/controls/scrollbars.htm

1. Because Borland C++BuilderX is free, we are going to use it.
Start Borland C++ Builder X and, on the main menu, click File -> New...

2. In the Object Gallery dialog box, click New GUI Application and click OK

3. In the New GUI Application Project Wizard - Step 1 of 3, in the Directory edit box of the
Project Settings section, type the path you want. Otherwise, type
C:\Programs\Win32 Programming

4. In the Name edit box, type ScrollBars

188

http://www.borland.com/cbuilderx/

Automatic Scroll Bars

Some controls need a scroll bar to efficiently implement their functionality. The primary
example is the edit control, which is used to display text. On that control, when the text is too
long, the user needs to be able to scroll down and up to access the document fully. In the same
way, if the text is too wide, the user needs to be able to scroll left and right to view the whole
document.

When creating a text-based document or window, you can easily ask that one or both scroll
bars be added. Of course, an edit control must be able to handle multiple lines of text. This is
taken care of by adding the ES_MULTILINE flag to its styles. Then:

• To add a vertical scroll bar to the window, add the WS_VSCROLL flag to the Style
argument of the CreateWindow() or the CreateWindowEx() function.

• To add a horizontal scroll bar to the window, add the WS_HSCROLL flag to the Style
argument of the CreateWindow() or the CreateWindowEx() function.

• To make the vertical scroll bar appear when necessary, that is, when the document is too
long, add the ES_AUTOVSCROLL style

• To make the horizontal scroll bar appear as soon as at least one line of the document is
too wide, add the ES_AUTOVSCROLL style

Of course, you can use only one, two, three or all four styles.

Practical Learning: Automatically Handling Scroll Bars

189

1. To create a small editor with its scroll bars, modify the procedure as follows:

2.

LRESULT CALLBACK WndProcedure(HWND hWnd, UINT Msg,
 WPARAM wParam, LPARAM lParam)
{
 static HWND hWndEdit;

 switch(Msg)
 {
 case WM_CREATE:

 hWndEdit = CreateWindow("EDIT", // We are creating an Edit
control
 NULL, // Leave the control empty
 WS_CHILD | WS_VISIBLE | WS_HSCROLL |
 WS_VSCROLL | ES_LEFT |
ES_MULTILINE |
 ES_AUTOHSCROLL | ES_AUTOVSCROLL,
 0, 0, 0, 0, // Let the WM_SIZE messge
below take care of the size
 hWnd,
 0,
 hInst,
 NULL);

 return 0;

 case WM_SETFOCUS:
 SetFocus(hWndEdit);
 return 0;

 case WM_SIZE:
 MoveWindow(hWndEdit, 0, 0, LOWORD(lParam), HIWORD(lParam),
TRUE);
 return 0;

 case WM_DESTROY:
 // If the user has finished, then close the window
 PostQuitMessage(WM_QUIT);
 break;
 default:
 // Process the left-over messages
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 // If something was not done, let it go
 return 0;
}

Test the application

190

 Control-Based Scroll Bars

Introduction

Microsoft Windows provides another type of scroll bar. Treated as its own control, a scroll bar is
created like any other window and can be positioned anywhere on its host.

To create a scroll bar as a Windows control, call the CreateWindow() or the
CreateWindowEx() functions and specify the class name as SCROLLBAR.

Practical Learning: Using Scroll Bar Controls

1. Start a new GUI Application and name it CtrlScrollBars

2. Create its accompanying file as Exercise.cpp

3. To create a resource header file, on the main menu, click File -> New File...

4. In the Create New File dialog box, in the Name, type resource

191

5. In the Type combo box, select h

6. Click OK

7. In the file, type:

#define IDD_CONTROLS_DLG 101
#define IDC_CLOSE_BTN 1000

8. To create a resource script, on the main menu, click File -> New File...

9. In the Create New File dialog box, in the Name, type CtrlScrollBars

10. In the Type combo box, select rc

11.Click OK

12. In the file, type:

#include "resource.h"

IDD_CONTROLS_DLG DIALOG DISCARDABLE 200, 150, 235, 151
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Windows Controls"
FONT 8, "MS Sans Serif"
BEGIN
 PUSHBUTTON "&Close",IDC_CLOSE_BTN,178,7,50,14
END

192

13.Display the Exercise.cpp file and change it as follows:

#include <windows.h>
#ifdef __BORLANDC__
 #pragma argsused
#endif

#include "resource.h"

//---

HWND hWnd;
HINSTANCE hInst;
LRESULT CALLBACK DlgProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam);
//---

int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow)
{
 hInst = hInstance;

 DialogBox(hInst, MAKEINTRESOURCE(IDD_CONTROLS_DLG),
 hWnd, reinterpret_cast<DLGPROC>(DlgProc));

 return 0;
}
//---

LRESULT CALLBACK DlgProc(HWND hWndDlg, UINT Msg,
 WPARAM wParam, LPARAM lParam)
{
 switch(Msg)
 {
 case WM_INITDIALOG:
 return TRUE;

 case WM_COMMAND:
 switch(wParam)
 {
 case IDC_CLOSE_BTN:
 EndDialog(hWndDlg, 0);
 return TRUE;
 }
 break;

 case WM_CLOSE:
 PostQuitMessage(WM_QUIT);
 break;
 }

 return FALSE;
}
//---

193

14.Test the application

Scroll Bar Creation

The easiest way to add a scroll bar to a project is through the resource script of the project.
The syntax to follow is:

SCROLLBAR id, x, y, width, height [[, style [[, ExtendedStyle]]]]

This declaration starts with the SCROLLBAR keyword as the name of the class that creates a
scroll bar.

The id is the identification of the control

The x parameter is the Left parameter of the control

The y parameter is the Top parameter of the control

The width parameter is the distance from the left to the right border of the control

The height parameter is the distance from the top to the bottom border of the control

These 5 parameters are required. Here is an example:

SCROLLBAR IDC_SCROLLBAR1,10,45,215,11

Alternatively, to create a scroll bar, you can use either the CreateWindow() or the
CreateWindowEx() functions, specifying the class name as SCROLLBAR. Here is an
example:

//--

LRESULT CALLBACK DlgProc(HWND hWndDlg, UINT Msg,
 WPARAM wParam, LPARAM lParam)
{
 switch(Msg)
 {
 case WM_INITDIALOG:
 CreateWindowEx(0L,
 "SCROLLBAR",
 NULL, // There is no text to display
 WS_CHILD | WS_VISIBLE,
 50,
 20,
 220,
 21,
 hWndDlg,
 NULL,
 hInst,
 NULL);

 return TRUE;

 case WM_CLOSE:
 PostQuitMessage(WM_QUIT);
 break;
 }

194

 return FALSE;
}
//--

A third alternative is to create your own class. Here is an example:

#include <windows.h>
#include "Resource.h"
//--

class WScrollBar
{
public:

WScrollBar();
HWND Create(HWND parent, HINSTANCE hinst,

 DWORD dStyle = WS_CHILD | WS_VISIBLE,
 int x = 0, int y = 0, int width = 200, int height = 20);

virtual ~WScrollBar();
HWND hWndScrollBar;

private:
};
//--

WScrollBar::WScrollBar()
{
}
//--

WScrollBar::~WScrollBar()
{
}
//--

HWND WScrollBar::Create(HWND parent, HINSTANCE hinst,

 DWORD dStyle, int x, int y, int width, int height)
{

hWndScrollBar = CreateWindow("SCROLLBAR", NULL, dStyle,
 x, y, width, height, parent,

 NULL, hinst, NULL);
return hWndScrollBar;

}
//--

HWND hWnd;
HINSTANCE hInst;
LRESULT CALLBACK DlgProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam);
//--

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)
{

hInst = hInstance;

DialogBox(hInst, MAKEINTRESOURCE(IDD_CONTROLS_DLG),

195

 hWnd, reinterpret_cast<DLGPROC>(DlgProc));

return FALSE;
}
//--

LRESULT CALLBACK DlgProc(HWND hWndDlg, UINT Msg,

 WPARAM wParam, LPARAM lParam)
{

WScrollBar ScrBar;

switch(Msg)
{
case WM_INITDIALOG:

ScrBar.Create(hWndDlg, hInst);
return TRUE;

case WM_COMMAND:
switch(wParam)
{
case IDCANCEL:

EndDialog(hWndDlg, 0);
break;

}
break;

case WM_CLOSE:
PostQuitMessage(WM_QUIT);
break;

}

return FALSE;
}
//--

Practical Learning: Creating a Scroll Bar

1. Before creating the scroll bar control, modify the resource.h file as follows:

#define IDD_CONTROLS_DLG 101
#define IDC_CLOSE_BTN 1000
#define IDC_SCROLLER 1001

2. To add a scroll bar to the dialog box, add the following line:

#include "resource.h"

IDD_CONTROLS_DLG DIALOG DISCARDABLE 200, 150, 235, 151
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Windows Controls"
FONT 8, "MS Sans Serif"
BEGIN
 PUSHBUTTON "&Close",IDC_CLOSE_BTN,178,7,50,14
 SCROLLBAR IDC_SCROLLER,10,45,215,11
END

196

3. Test the application

4. Return to your programming environment

Scroll Bar Characteristics

As mentioned already, there are two categories of scroll bars. The desired category is set using
one of the scroll bar styles. As you can see from the above picture, the default orientation of a
scroll bar is horizontal whose value is SBS_HORZ. If you want to produce a vertical scroll bar,
you can OR the SBS_VERT style in addition to Windows styles but do not OR both SBS_HORZ
and SBS_VERT styles on the same control. Here is an example that creates a vertical scroll
bar control. Here is an example that creates a vertical scroll bar:

//--

LRESULT CALLBACK DlgProc(HWND hWndDlg, UINT Msg,

 WPARAM wParam, LPARAM lParam)
{

WScrollBar ScrBar;

switch(Msg)
{
case WM_INITDIALOG:

ScrBar.Create(hWndDlg, hInst, WS_CHILD | WS_VISIBLE |
SBS_VERT,

 20, 10, 20, 200);
return TRUE;

case WM_CLOSE:
PostQuitMessage(WM_QUIT);
break;

}

return FALSE;
}
//--

197

This would produce:

Practical Learning: Creating a Vertical Scroll Bar

1. To make the scroll bar vertical, change the script as follows:

2.

#include "resource.h"

IDD_CONTROLS_DLG DIALOG DISCARDABLE 200, 150, 235, 151
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Windows Controls"
FONT 8, "MS Sans Serif"
BEGIN
 PUSHBUTTON "&Close",IDC_CLOSE_BTN,178,7,50,14
 SCROLLBAR IDC_SCROLLER,10,10,15,130,SBS_VERT
END

Test the application

Scroll Bar Functions

The SCROLLBAR class provides various functions that can be used to set its limits or
change its position, etc. To use the scroll bar as a control, you should know its limits.
These define the minimum and the maximum values that the thumb can navigate to.
To set this range of values, you can call the SetScrollRange() function. Its syntax is:

BOOL SetScrollRange(HWND hWnd, int nBar, int nMinPos, int nMaxPos, BOOL
bRedraw);

Here is an example:

#include <windows.h>
#include "Resource.h"
//--

class WScrollBar
{

198

public:
WScrollBar();
HWND Create(HWND parent, HINSTANCE hinst,

DWORD dStyle = WS_CHILD | WS_VISIBLE,
int x = 0, int y = 0, int width = 200, int

height = 20);
virtual ~WScrollBar();
HWND hWndScrollBar;
BOOL SetScrollRange(int min = 0, int max = 100, BOOL redraw =

TRUE);
private:
};
//--

WScrollBar::WScrollBar()
{
}
//--

WScrollBar::~WScrollBar()
{
}
//--

HWND WScrollBar::Create(HWND parent, HINSTANCE hinst,

DWORD dStyle, int x, int y, int width, int
height)
{

hWndScrollBar = CreateWindow("SCROLLBAR", NULL, dStyle,
 x, y, width, height, parent, NULL, hinst,

NULL);
return hWndScrollBar;

}
//--

BOOL WScrollBar::SetScrollRange(int min, int max, BOOL redraw)
{

BOOL SSR = ::SetScrollRange(hWndScrollBar, SB_CTL, min, max, TRUE);

return SSR;
}
//--

HWND hWnd;
HINSTANCE hInst;
LRESULT CALLBACK DlgProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam);
//--

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)
{

hInst = hInstance;

DialogBox(hInst, MAKEINTRESOURCE(IDD_CONTROLS_DLG),
 hWnd, reinterpret_cast<DLGPROC>(DlgProc));

199

return FALSE;
}
//--

LRESULT CALLBACK DlgProc(HWND hWndDlg, UINT Msg,

 WPARAM wParam, LPARAM lParam)
{

WScrollBar ScrBar;

switch(Msg)
{
case WM_INITDIALOG:

ScrBar.Create(hWndDlg, hInst, WS_CHILD | WS_VISIBLE |
SBS_VERT,

 20, 10, 20, 200);
ScrBar.SetScrollRange(0, 224);

return TRUE;

case WM_CLOSE:
PostQuitMessage(WM_QUIT);
break;

}

return FALSE;
}
//--

If the limits of the controls have already been set, you can find them out by calling the
GetScrollRange() function. Its syntax is:

BOOL GetScrollRange(HWND hWnd, int nBar, LPINT lpMinPos, LPINT lpMaxPos);

Here is an example:

//--

class WScrollBar
{
public:

WScrollBar();
HWND Create(HWND parent, HINSTANCE hinst,

DWORD dStyle = WS_CHILD | WS_VISIBLE,
int x = 0, int y = 0, int width = 200, int

height = 20);
virtual ~WScrollBar();
HWND hWndScrollBar;
BOOL SetScrollRange(int min = 0, int max = 100, BOOL redraw =

TRUE);
BOOL GetScrollRange(int *min, int *max) const;

private:
};
//--

WScrollBar::WScrollBar()

200

{
}
//--

WScrollBar::~WScrollBar()
{
}
//--

HWND WScrollBar::Create(HWND parent, HINSTANCE hinst,

 DWORD dStyle, int x, int y, int width, int height)
{

hWndScrollBar = CreateWindow("SCROLLBAR", NULL, dStyle,
 x, y, width, height, parent,

 NULL, hinst, NULL);
return hWndScrollBar;

}
//--

BOOL WScrollBar::SetScrollRange(int min, int max, BOOL redraw)
{

BOOL SSR = ::SetScrollRange(hWndScrollBar, SB_CTL, min, max, TRUE);

return SSR;
}
//--

BOOL WScrollBar::GetScrollRange(int *min, int *max) const
{

BOOL GSR = ::GetScrollRange(hWndScrollBar, SB_CTL, min, max);

return GSR;
}
//--

When a window that has a scroll bar control comes up, the thumb is positioned in its
minimum value. You may want the control to be positioned somewhere else than that.
This attribute is taken care of by the SetScrollPos() function. Its syntax:

int SetScrollPos(HWND hWnd, int nBar, int nPos, BOOL bRedraw);

You can implement and use this function as follows:

#include <windows.h>
#include "Resource.h"
//--

class WScrollBar
{
public:

WScrollBar();
HWND Create(HWND parent, HINSTANCE hinst,

DWORD dStyle = WS_CHILD | WS_VISIBLE,
int x = 0, int y = 0, int width = 200, int

height = 20);
virtual ~WScrollBar();

201

HWND hWndScrollBar;
BOOL SetScrollRange(int min = 0, int max = 100, BOOL redraw =

TRUE);
BOOL GetScrollRange(int *min, int *max) const;
int SetScrollPos(const int pos);

private:
};
//--

WScrollBar::WScrollBar()
{
}
//--

WScrollBar::~WScrollBar()
{
}
//--

HWND WScrollBar::Create(HWND parent, HINSTANCE hinst,

 DWORD dStyle, int x, int y, int width, int height)
{

hWndScrollBar = CreateWindow("SCROLLBAR", NULL, dStyle,
 x, y, width, height, parent, NULL, hinst,

NULL);
return hWndScrollBar;

}
//--

BOOL WScrollBar::SetScrollRange(int min, int max, BOOL redraw)
{

BOOL SSR = ::SetScrollRange(hWndScrollBar, SB_CTL, min, max, TRUE);

return SSR;
}
//--

BOOL WScrollBar::GetScrollRange(int *min, int *max) const
{

BOOL GSR = ::GetScrollRange(hWndScrollBar, SB_CTL, min, max);

return GSR;
}
//--

int WScrollBar::SetScrollPos(const int position)
{

int SSP = ::SetScrollPos(hWndScrollBar, SB_CTL, position, TRUE);

return SSP;
}
//--

HWND hWnd;
HINSTANCE hInst;
LRESULT CALLBACK DlgProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam);

202

//--

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)
{

hInst = hInstance;

DialogBox(hInst, MAKEINTRESOURCE(IDD_CONTROLS_DLG),
 hWnd, reinterpret_cast<DLGPROC>(DlgProc));

return FALSE;
}
//--

LRESULT CALLBACK DlgProc(HWND hWndDlg, UINT Msg,

 WPARAM wParam, LPARAM lParam)
{

WScrollBar ScrBar;

switch(Msg)
{
case WM_INITDIALOG:

ScrBar.Create(hWndDlg, hInst, WS_CHILD | WS_VISIBLE |
SBS_VERT,

 20, 10, 20, 200);
ScrBar.SetScrollRange(0, 224);
ScrBar.SetScrollPos(88);

return TRUE;

case WM_CLOSE:
PostQuitMessage(WM_QUIT);
break;

}

return FALSE;
}
//--

Practical Learning: Initializing a Scroll Bar

1. To set the scroll range and initial position of the control, initialize it in the procedure as
follows:

203

2.

//---

LRESULT CALLBACK DlgProc(HWND hWndDlg, UINT Msg,
 WPARAM wParam, LPARAM lParam)
{
 HWND hWndScroller;
 SCROLLINFO si;

 hWndScroller = GetDlgItem(hWndDlg, IDC_SCROLLER);

 switch(Msg)
 {
 case WM_INITDIALOG:
 ZeroMemory(&si, sizeof(si));
 si.cbSize = sizeof(si);
 si.fMask = SIF_RANGE | SIF_PAGE | SIF_POS;
 si.nMin = 0;
 si.nMax = 240;
 si.nPage = 10;
 si.nPos = 54;
 SetScrollInfo(hWndScroller, SB_CTL, &si, TRUE);

 return TRUE;

 case WM_COMMAND:
 switch(wParam)
 {
 case IDC_CLOSE_BTN:
 EndDialog(hWndDlg, 0);
 return TRUE;
 }
 break;

 case WM_CLOSE:
 PostQuitMessage(WM_QUIT);
 break;
 }

 return FALSE;
}
//---

Test the application

204

Scroll Bar Messages

To use a scroll bar, a person either clicks one of its buttons, clicks and hold the mouse on one
of its buttons, drags the thumb, or clicks an area on either side of the thumb. Any of these
actions sends a message that specifies the item the user clicked or dragged. To support this,
each category of scroll bar sends the appropriate message.

Practical Learning: Processing Scroll Bar Messages

1. Modify the resource header as follows:

2.

#define IDD_CONTROLS_DLG 101
#define IDC_CLOSE_BTN 1000
#define IDC_SCROLLER 1001
#define IDC_LABEL 1002

Create a label in the resource script file as follows:

3.

#include "resource.h"

IDD_CONTROLS_DLG DIALOG DISCARDABLE 200, 150, 235, 151
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Windows Controls"
FONT 8, "MS Sans Serif"
BEGIN
 PUSHBUTTON "&Close",IDC_CLOSE_BTN,178,7,50,14
 SCROLLBAR IDC_SCROLLER,10,10,15,130,SBS_VERT
 LTEXT "000",IDC_LABEL,40,68,13,8
END

To process a few messages of the scroll bar, change the procedure as follows:

205

4.

#include <windows.h>
#include <cstdio>
using namespace std;

#ifdef __BORLANDC__
 #pragma argsused
#endif

#include "resource.h"
//---

HWND hWnd;
HINSTANCE hInst;
LRESULT CALLBACK DlgProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam);
//---

int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow)
{
 hInst = hInstance;

 DialogBox(hInst, MAKEINTRESOURCE(IDD_CONTROLS_DLG),
 hWnd, reinterpret_cast<DLGPROC>(DlgProc));

 return 0;
}
//---

LRESULT CALLBACK DlgProc(HWND hWndDlg, UINT Msg,
 WPARAM wParam, LPARAM lParam)
{
 HWND hWndScroller;
 SCROLLINFO si;
 int CurPos;
 char strPosition[20];

 hWndScroller = GetDlgItem(hWndDlg, IDC_SCROLLER);

 switch(Msg)
 {
 case WM_INITDIALOG:
 CurPos = 0;

 ZeroMemory(&si, sizeof(si));
 si.cbSize = sizeof(si);
 si.fMask = SIF_RANGE | SIF_PAGE | SIF_POS;
 si.nMin = 0;
 si.nMax = 240;
 si.nPage = 10;
 si.nPos = 54;
 SetScrollInfo(hWndScroller, SB_CTL, &si, TRUE);

 sprintf(strPosition, "%d", si.nPos);
 SetDlgItemText(hWndDlg, IDC_LABEL, strPosition);

 return TRUE;

206

Windows Controls: Progress Bars

Overview

A progress bar is a Windows control that displays (small) rectangles that are each filled with a
color. These (small) rectangles are separate but adjacent each other so that, as they display,
they produce a bar. To have the effect of a progress bar, not all these rectangles display at the
same time. Instead, a numeric value specifies how many of these (small) rectangles can display
at one time.

There are two types of progress bars and various characteristics they can have. Although most
progress bars are horizontal, the control can assume a vertical position. We mentioned that a
progress bar is made of small colored rectangles. These rectangles can display distinctively
from each other although they are always adjacent. Alternatively, these rectangles can be
"glued" to produce a smooth effect, in which case they would not appear distinct.

1. Start a new Win32 Project and name it ProgressTime

2. Create it as a Windows Application and Empty Project

3. Display the Add Resource dialog box and double-click Dialog

4. Resize it to 320 x 166

5. Change its ID to IDD_CONTROLS_DLG

6. Change its Caption to Progress Bar Example

7. Change its X Pos to 200 and change its Y Pos to 180

8. Save All

9. Add a new C++ (Source) File and name it Exercise

10. Implement it as follows:

207

11.

#include <windows.h>
#include "Resource.h"

//---

HWND hWnd;
HINSTANCE hInst;
LRESULT CALLBACK DlgProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam);
//---

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)
{

hInst = hInstance;

DialogBox(hInst, MAKEINTRESOURCE(IDD_CONTROLS_DLG),
 hWnd, reinterpret_cast<DLGPROC>(DlgProc));

return FALSE;
}
//---

LRESULT CALLBACK DlgProc(HWND hWndDlg, UINT Msg,

 WPARAM wParam, LPARAM lParam)
{

switch(Msg)
{
case WM_INITDIALOG:

return TRUE;

case WM_COMMAND:
switch(wParam)
{
case IDOK:

EndDialog(hWndDlg, 0);
return TRUE;

case IDCANCEL:
EndDialog(hWndDlg, 0);
return TRUE;

}
break;

}

return FALSE;
}
//---

Test the application and return to your programming environment

Progress Bar Creation
Because a progress control belongs to the family of Common Controls, before using it, call the
InitCommonControlsEx() function. When initializing the INITCOMMONCONTROLSEX structure,
assign the ICC_PROGRESS_CLASS to its dwICC member variable.

208

To create a progress bar, call the CreateWindowEx() function and specify the class name as
PROGRESS_CLASS.

1. To add a progress to the progress, change the Exercise.cpp source file as follows:

209

2.

#include <windows.h>
#include <commctrl.h>
#include "Resource.h"

//---

HWND hWnd;
HINSTANCE hInst;
LRESULT CALLBACK DlgProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam);
//---

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)
{

hInst = hInstance;

DialogBox(hInst, MAKEINTRESOURCE(IDD_CONTROLS_DLG),
 hWnd, reinterpret_cast<DLGPROC>(DlgProc));

return FALSE;
}
//---

LRESULT CALLBACK DlgProc(HWND hWndDlg, UINT Msg,

 WPARAM wParam, LPARAM lParam)
{

INITCOMMONCONTROLSEX InitCtrlEx;

InitCtrlEx.dwSize = sizeof(INITCOMMONCONTROLSEX);
InitCtrlEx.dwICC = ICC_PROGRESS_CLASS;
InitCommonControlsEx(&InitCtrlEx);

switch(Msg)
{
case WM_INITDIALOG:

CreateWindowEx(0, PROGRESS_CLASS, NULL,
 WS_CHILD | WS_VISIBLE,

 20, 20, 260, 17,
 hWndDlg, NULL, hInst, NULL);

return TRUE;

case WM_COMMAND:
switch(wParam)
{
case IDOK:

EndDialog(hWndDlg, 0);
return TRUE;

case IDCANCEL:
EndDialog(hWndDlg, 0);
return TRUE;

}
break;

}

return FALSE;
}

210

SendMessage(hProgress, PBM_GETRANGE, (WPARAM)(MAKELPARAM)(BOOL),
(LPARAM)(MAKELPARAM)(PPBRANGE, ppBRange));

Techniques of Using Menus

Introduction

This example show how to create an application with a main menu, how to add an item to the
system menu, and how to create a context-sensitive menu activated when the user right-clicks
somewhere.

Resource Header
#define IDS_APP_NAME 1
#define IDR_MAIN_MENU 101
#define IDR_POPUP 102
#define IDM_FILE_EXIT 40001
#define IDM_SMALL 40002
#define IDM_MEDIUM 40003
#define IDM_LARGE 40004
#define IDM_JUMBO 40005
#define IDM_HELP_ABOUT 40006

Resource Script
#include "resource.h"

///
//
// Menu
//

IDR_MAIN_MENU MENU
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "E&xit", IDM_FILE_EXIT
 END
 POPUP "&Help"
 BEGIN
 MENUITEM "&About...\tF1", IDM_HELP_ABOUT
 END
END

IDR_POPUP MENU
BEGIN
 POPUP "_POPUP_"
 BEGIN
 MENUITEM "&Small", IDM_SMALL
 MENUITEM "&Medium", IDM_MEDIUM
 MENUITEM "&Large", IDM_LARGE

211

 MENUITEM SEPARATOR
 MENUITEM "&Jumbo", IDM_JUMBO
 END
END

///
//
// String Table
//

STRINGTABLE
BEGIN
 IDM_FILE_EXIT "Closes the application\nClose"
 IDM_SMALL "Selects a small pizza"
 IDM_MEDIUM "Selects a medium pizza"
 IDM_LARGE "Makes up a large pizza"
 IDM_JUMBO "Builds an extra-large pizza"
 IDM_HELP_ABOUT "About this application"
END

STRINGTABLE
BEGIN
 IDS_APP_NAME "MenuApplied"
END

Source Code
#include <windows.h>
#include "resource.h"

HINSTANCE hInst;
LRESULT CALLBACK WndProcedure(HWND hWnd, UINT uMsg,

 WPARAM wParam, LPARAM lParam);

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{

MSG Msg;
HWND hWnd;
WNDCLASSEX WndClsEx;

hInst = hInstance;

const char *ClsName = "MenuApplied";
const char *WndName = "Techniques of Using Menus";

// Create the application window
WndClsEx.cbSize = sizeof(WNDCLASSEX);
WndClsEx.style = CS_HREDRAW | CS_VREDRAW;
WndClsEx.lpfnWndProc = WndProcedure;
WndClsEx.cbClsExtra = 0;
WndClsEx.cbWndExtra = 0;
WndClsEx.hIcon = LoadIcon(NULL, IDI_WARNING);

212

WndClsEx.hCursor = LoadCursor(NULL, IDC_ARROW);
WndClsEx.hbrBackground = (HBRUSH)(COLOR_BTNFACE + 1);
WndClsEx.lpszMenuName = MAKEINTRESOURCE(IDR_MAIN_MENU);
WndClsEx.lpszClassName = ClsName;
WndClsEx.hInstance = hInstance;
WndClsEx.hIconSm = LoadIcon(NULL, IDI_WARNING);

RegisterClassEx(&WndClsEx);

hWnd = CreateWindow(ClsName,
 WndName,

WS_OVERLAPPEDWINDOW,
200,
160,
460,
320,
NULL,
NULL,
hInstance,
NULL);

if(!hWnd)
return 0;

ShowWindow(hWnd, SW_SHOWNORMAL);
UpdateWindow(hWnd);

while(GetMessage(&Msg, NULL, 0, 0))
{

 TranslateMessage(&Msg);
 DispatchMessage(&Msg);

}

return 0;
}

LRESULT CALLBACK WndProcedure(HWND hWnd, UINT Msg,
 WPARAM wParam, LPARAM lParam)

{
// Handle to a menu. This will be used with the context-sensitive

menu
HMENU hMenu;
// Handle to the system menu
HMENU hSysMenu;
// Handle to the context menu that will be created
HMENU hMenuTrackPopup;

 switch(Msg)
 {

case WM_CREATE:
// To modify the system menu, first get a handle to it
hSysMenu = GetSystemMenu(hWnd, FALSE);
// This is how to add a separator to a menu
InsertMenu(hSysMenu, 2, MF_SEPARATOR, 0, "-");
// This is how to add a menu item using a string
AppendMenu(hSysMenu, MF_STRING, 1, "Practical Techniques");

213

// This is how to add a menu item using a defined
identifier

AppendMenu(hSysMenu, MF_STRING, IDM_HELP_ABOUT,
"About...");

return 0;

case WM_COMMAND:
switch(LOWORD(wParam))
{
case IDM_LARGE:

MessageBox(hWnd, "Menu Item Selected = Large",
"Message", MB_OK);

break;

case IDM_FILE_EXIT:
PostQuitMessage(WM_QUIT);
break;

}
return 0;

case WM_CONTEXTMENU:
// Get a handle to the popup menu using its resource
if((hMenu = LoadMenu(hInst, MAKEINTRESOURCE(IDR_POPUP)))

== NULL)
return 0;

// Get a handle to the first shortcut menu
hMenuTrackPopup = GetSubMenu(hMenu, 0);

// Display the popup menu when the user right-clicks
TrackPopupMenu(hMenuTrackPopup,

 TPM_LEFTALIGN | TPM_RIGHTBUTTON,
 LOWORD(lParam),
 HIWORD(lParam),
 0,
 hWnd,
 NULL);

break;

 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;

 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }

 return 0;
}

A Popup Window

214

Introduction A window is referred to
as popup when it is relatively small, is equipped with a short than usual title bar, is equipped with only the System Close
button on its title bar, and has thin borders. Such a window is usually used to accompany or assist another big window or
the main window of an application. This means that a popup window is hardly used by itself or as the main frame of an
application. Based on this description, there are some characteristics you should apply to the frame to make it appear as
a popup window.

To create a popup window, it should have the WS_POPUPWINDOW and the WS_CAPTION styles. It should fit a
relatively small rectangle. It may also have the WS_EX_TOOLWINDOW extended style.

In this exercise, to illustrate our point, we will create a frame-based application where a popup window is the main object.

1.

Practical Learning: Introducing Tables
Start your programming environment. For this example, we will use Borland C++BuilderX.
Therefore, start Borland C++BuilderX and, on the main menu, click File -> New...

215

http://www.functionx.com/win32/howto/popupwindow.htm

2. In the Object Gallery dialog box, click New GUI Application and click OK

3. In the New GUI Application Project Wizard - Step 1 of 3, in the Directory edit box of the Project Settings section,
type the path you want. Otherwise, type
C:\Programs\Win32 Programming

4. In the Name edit box, type Popup1 and click Next

5. In the New GUI Application Project Wizard - Step 2 of 3, accept the defaults and click Next

6. In the New GUI Application Project Wizard - Step 3 of 3, click the check box under Create

7. Select Untitled under the Name column header. Type Exercise to replace the name and press Tab

8. Click Finish

9. Display the Exercise.cpp file and change it as follows:

216

10.

#include <windows.h>
#ifdef __BORLANDC__
 #pragma argsused
#endif
//--

const char *ClsName = "WndProperties";
const char *WndName = "Popup Window";
//--

LRESULT CALLBACK WndProcedure(HWND hWnd, UINT uMsg,
 WPARAM wParam, LPARAM lParam);
//--

int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 MSG Msg;
 HWND hWnd;
 WNDCLASSEX WndClsEx;

 // Create the application window
 WndClsEx.cbSize = sizeof(WNDCLASSEX);
 WndClsEx.style = CS_HREDRAW | CS_VREDRAW;
 WndClsEx.lpfnWndProc = WndProcedure;
 WndClsEx.cbClsExtra = 0;
 WndClsEx.cbWndExtra = 0;
 WndClsEx.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 WndClsEx.hCursor = LoadCursor(NULL, IDC_ARROW);
 WndClsEx.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
 WndClsEx.lpszMenuName = NULL;
 WndClsEx.lpszClassName = ClsName;
 WndClsEx.hInstance = hInstance;
 WndClsEx.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

 // Register the application
 RegisterClassEx(&WndClsEx);

 // Create the window object
 hWnd = CreateWindowEx(WS_EX_TOOLWINDOW,
 ClsName, WndName,
 WS_POPUPWINDOW | WS_CAPTION,
 200, 120, 200, 320,
 NULL, NULL, hInstance, NULL);

 // Find out if the window was created
 if(!hWnd) // If the window was not created,
 return 0; // stop the application

 // Display the window to the user
 ShowWindow(hWnd, SW_SHOWNORMAL);
 UpdateWindow(hWnd);

 // Decode and treat the messages
 // as long as the application is running
 while(GetMessage(&Msg, NULL, 0, 0))
 {

217

Calling a Dialog Box From an SDI

Introduction
A Single Document Interface (SDI) is the type of application that presents a frame-based
window equipped with a title bar, a menu, and thick borders. In most cases the one-frame
window is enough to support the application.

To provide support and various options to the frame of an SDI, you can add other dependent
windows such as dialog boxes. When such a dialog box is needed, you can provide a menu item
that the user would use to display the dialog box. Just as you can add one dialog box to an
application, in the same way, you can add as many dialog boxes as you judge necessary to your
SDI application and provide a way for the user to display them.

To display a dialog from an SDI, the easiest and most usual way consists of creating a menu
item on the main menu. When implementing the event of the menu item, as normally done in
C++, in the source file of the class that would call it, include the header file of the dialog box. In
the event that calls the dialog box, first declare a variable based on the name of the class of the
dialog box.

Practical Learning: Calling a Dialog Box From an SDI

1. Start your programming environment. For this example, we will use Borland
C++BuilderX.
Therefore, start Borland C++BuilderX and, on the main menu, click File -> New...

218

2. In the Object Gallery dialog box, click New GUI Application and click OK

3. In the New GUI Application Project Wizard - Step 1 of 3, in the Directory edit box
of the Project Settings section, type the path you want. Otherwise, type
C:\Programs\Win32 Programming

219

4. In the Name edit box, type SDI1

5. Click Next

6. In the New GUI Application Project Wizard - Step 2 of 3, accept the defaults and
click Next

7. In the New GUI Application Project Wizard - Step 3 of 3, click the check box
under Create

8. Select Untitled under the Name column header. Type Exercise to replace the
name and press Tab

9. Click Finish

10. To create a resource header file, on the main menu, click File -> New File...

11. In the Create New File dialog box, in the Name, type Resource

220

12. In the Type combo box, select h, and click OK

13. In the file, type:

#define IDR_MAIN_MENU 1001
#define IDM_FILE_EXIT 1002
#define IDM_HELP_ABOUT 1003

#define IDD_ABOUTDLGBOX 1010

14.To create a resource script, on the main menu, click File -> New File...

15. In the Create New File dialog box, in the Name, type SDI1

16. In the Type combo box, select rc, and click OK

17. In the file, type:

#include "Resource.h"

// Main Menu
IDR_MAIN_MENU MENU
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "E&xit", IDM_FILE_EXIT
 END
 POPUP "&Help"
 BEGIN

221

 MENUITEM "&About...", IDM_HELP_ABOUT
 END
END

// Dialog Box: About
IDD_ABOUTDLGBOX DIALOGEX 0, 0, 184, 81
STYLE DS_SETFONT | DS_MODALFRAME | DS_FIXEDSYS | WS_POPUP |
WS_CAPTION |
 WS_SYSMENU
CAPTION "About SDI1"
FONT 8, "MS Shell Dlg"
BEGIN
 DEFPUSHBUTTON "OK",IDOK,127,7,50,16,WS_GROUP
END

18.Display the Exercise.cpp file and change it as follows:

#include <windows.h>
#include "Resource.h"

#ifdef __BORLANDC__
 #pragma argsused
#endif
//--

HINSTANCE hInst;
const char *ClsName = "CallingDlg";
const char *WndName = "Calling a Dialog Box From an SDI";
//--

LRESULT CALLBACK WndProcedure(HWND hWnd, UINT uMsg,
 WPARAM wParam, LPARAM lParam);
LRESULT CALLBACK DlgProc(HWND hWndDlg, UINT Msg,
 WPARAM wParam, LPARAM lParam);
//--

int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 MSG Msg;
 HWND hWnd;
 WNDCLASSEX WndClsEx;

 // Create the application window
 WndClsEx.cbSize = sizeof(WNDCLASSEX);
 WndClsEx.style = CS_HREDRAW | CS_VREDRAW;
 WndClsEx.lpfnWndProc = WndProcedure;
 WndClsEx.cbClsExtra = 0;
 WndClsEx.cbWndExtra = 0;
 WndClsEx.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 WndClsEx.hCursor = LoadCursor(NULL, IDC_ARROW);
 WndClsEx.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
 WndClsEx.lpszMenuName = MAKEINTRESOURCE(IDR_MAIN_MENU);
 WndClsEx.lpszClassName = ClsName;
 WndClsEx.hInstance = hInstance;
 WndClsEx.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

222

 // Register the application
 RegisterClassEx(&WndClsEx);
 hInst = hInstance;

 // Create the window object
 hWnd = CreateWindow(ClsName,
 WndName,
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 NULL,
 NULL,
 hInstance,
 NULL);

 // Find out if the window was created
 if(!hWnd) // If the window was not created,
 return 0; // stop the application

 // Display the window to the user
 ShowWindow(hWnd, SW_SHOWNORMAL);
 UpdateWindow(hWnd);

 // Decode and treat the messages
 // as long as the application is running
 while(GetMessage(&Msg, NULL, 0, 0))
 {
 TranslateMessage(&Msg);
 DispatchMessage(&Msg);
 }

 return Msg.wParam;
}
//--

LRESULT CALLBACK WndProcedure(HWND hWnd, UINT Msg,
 WPARAM wParam, LPARAM lParam)
{
 switch(Msg)
 {
 case WM_COMMAND:
 switch(LOWORD(wParam))
 {
 case IDM_FILE_EXIT:
 PostQuitMessage(WM_QUIT);
 break;
 case IDM_HELP_ABOUT:
 DialogBox(hInst,
 MAKEINTRESOURCE(IDD_ABOUTDLGBOX),
 hWnd,
 reinterpret_cast<DLGPROC>(DlgProc));
 break;
 }

223

 return 0;

 // If the user wants to close the application
 case WM_DESTROY:
 // then close it
 PostQuitMessage(WM_QUIT);
 break;
 default:
 // Process the left-over messages
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 // If something was not done, let it go
 return 0;
}
//--

LRESULT CALLBACK DlgProc(HWND hWndDlg, UINT Msg, WPARAM wParam, LPARAM
lParam)
{
 switch(Msg)
 {
 case WM_INITDIALOG:
 return TRUE;

 case WM_COMMAND:
 switch(wParam)
 {
 case IDOK:
 EndDialog(hWndDlg, 0);
 return TRUE;
 }
 break;
 }

 return FALSE;
}
//--

19.

20. Test the application

Calling One Dialog Box From Another
Dialog Box

224

Introduction It is unusual to have a
dialog-based application. This is because a dialog box is usually made to complement a frame-based application. In that
case, after adding the dialog box to the application, you would also provide the ability to call the dialog from an SDI
In the same way, if you create an application made of various dialog boxes, at one time, you may want the user to be
able to call one dialog box from another. To start, you would create the necessary dialog boxes.

1.

Practical Learning: Calling One Dialog Box From Another
Start your programming environment. For this example, we will use Borland C++BuilderX.
Therefore, start Borland C++BuilderX and, on the main menu, click File -> New...

225

http://www.functionx.com/win32/howto/calldlgfromsdi.htm

2. In the Object Gallery dialog box, click New GUI Application and click OK

3. In the Name edit box, type Primary1 and click Next

4. In the New GUI Application Project Wizard - Step 2 of 3, accept the defaults and click Next

5. In the New GUI Application Project Wizard - Step 3 of 3, click the check box under Create

6. Select Untitled under the Name column header. Type Exercise to replace the name and press Tab

7. Click Finish

8. To create a resource header file, on the main menu, click File -> New File...

9. In the Create New File dialog box, in the Name, type Resource

10. In the Type combo box, select h, and click OK

11. In the file, type:

12.

#define IDD_PRIMARY_DLG 102
#define IDD_SECOND_DLG 104
#define IDC_SECOND_BTN 106 To create a resource

script, on the main menu, click File -> New File...

13. In the Create New File dialog box, in the Name, type Primary1

14. In the Type combo box, select rc, and click OK

15. In the file, type:

226

16.

#include "Resource.h"

/* -- Dialog Box: Primary -- */

IDD_PRIMARY_DLG DIALOGEX 0, 0, 263, 159
STYLE DS_SETFONT | DS_MODALFRAME | DS_FIXEDSYS | WS_POPUP |
WS_VISIBLE |
 WS_CAPTION | WS_SYSMENU
EXSTYLE WS_EX_APPWINDOW
CAPTION "Calling One Dialog Box From Another"
FONT 8, "MS Shell Dlg"
BEGIN
 PUSHBUTTON "Close",IDCANCEL,204,12,50,16
 PUSHBUTTON "Second",IDC_SECOND_BTN,12,12,50,14
END

/* -- Dialog Box: Second -- */

IDD_SECOND_DLG DIALOGEX 0, 0, 186, 90
STYLE DS_SETFONT | DS_MODALFRAME | DS_FIXEDSYS | WS_POPUP |
WS_CAPTION |
 WS_SYSMENU
CAPTION "Second"
FONT 8, "MS Shell Dlg"
BEGIN
 DEFPUSHBUTTON "OK",IDOK,129,7,50,14
 PUSHBUTTON "Cancel",IDCANCEL,129,24,50,14
END Display the Exercise.cpp

file and change it as follows:

227

17.

#include <windows.h>
#include "Resource.h"

#ifdef __BORLANDC__
 #pragma argsused
#endif
//--

HWND hWnd;
HINSTANCE hInst;
const char *ClsName = "CallingDlg";
const char *WndName = "Calling One Dialog Box From Another";
LRESULT CALLBACK DlgProcPrimary(HWND hWndDlg, UINT Msg,
 WPARAM wParam, LPARAM lParam);
LRESULT CALLBACK DlgProcSecondary(HWND hWndDlg, UINT Msg,
 WPARAM wParam, LPARAM lParam);
//--

int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 DialogBox(hInstance, MAKEINTRESOURCE(IDD_PRIMARY_DLG),
 hWnd, (DLGPROC)DlgProcPrimary);

 hInst = hInstance;
 return FALSE;
}
//--

LRESULT CALLBACK DlgProcPrimary(HWND hWndDlg, UINT Msg,
 WPARAM wParam, LPARAM lParam)
{
 switch(Msg)
 {
 case WM_INITDIALOG:
 return TRUE;

 case WM_COMMAND:
 switch(wParam)
 {
 case IDC_SECOND_BTN:
 DialogBox(hInst, MAKEINTRESOURCE(IDD_SECOND_DLG),
 hWnd, (DLGPROC)DlgProcSecondary);
 return FALSE;
 case IDCANCEL:
 EndDialog(hWndDlg, 0);
 return TRUE;
 }
 break;
 }

 return FALSE;
}
//--

LRESULT CALLBACK DlgProcSecondary(HWND hWndDlg, UINT Msg,
 WPARAM wParam, LPARAM lParam)

228

A Child Window Attached to a Frame

Introduction

This is an example of creating and attaching a child window, like a toolbox, to the main frame
of an application.

Resource Header
#define IDD_TOOLBOX_DLG 101
#define IDR_MAIN_MENU 102
#define IDM_FILE_EXIT 40001
#define IDM_VIEW_TOOLBOX 40002

Resource Script
#include "resource.h"

///
//
// Dialog
//

IDD_TOOLBOX_DLG DIALOG DISCARDABLE 0, 0, 86, 249
STYLE DS_MODALFRAME | WS_CHILD
FONT 8, "MS Sans Serif"
BEGIN
END

229

///
//
// Menu
//

IDR_MAIN_MENU MENU DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "E&xit", IDM_FILE_EXIT
 END
 POPUP "&View"
 BEGIN
 MENUITEM "&Toolbox", IDM_VIEW_TOOLBOX, CHECKED
 END
END

///
//
// String Table
//

STRINGTABLE DISCARDABLE
BEGIN
 IDM_FILE_EXIT "Closes the application"
 IDM_VIEW_TOOLBOX "Toggles the presence and disappearance of the toolbox\nShow/Hide Toolbox"
END

#endif // English (U.S.) resources
///

Source Code
#include <windows.h>
#include "resource.h"

HINSTANCE hInst;
LPTSTR strAppName = "WndFrame";
LPTSTR WndName = "Attaching a child window to an application's frame";
LPTSTR strToolbox = "WndFloater";

HWND hWndMainFrame, hWndToolbox;

LRESULT CALLBACK MainWndProc(HWND hWnd, UINT Msg,
 WPARAM wParam, LPARAM

lParam);
LRESULT CALLBACK ToolboxProc(HWND hWnd, UINT Msg,

 WPARAM wParam, LPARAM
lParam);
//---
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 MSG msg;
 RECT rect;

WNDCLASSEX WndClsEx;

WndClsEx.cbSize = sizeof(WNDCLASSEX);

230

WndClsEx.style = CS_HREDRAW | CS_VREDRAW;
WndClsEx.lpfnWndProc = MainWndProc;
WndClsEx.cbClsExtra = 0;
WndClsEx.cbWndExtra = 0;
WndClsEx.hIcon = LoadIcon(NULL, IDI_APPLICATION);
WndClsEx.hCursor = LoadCursor(NULL, IDC_ARROW);
WndClsEx.hbrBackground = static_cast<HBRUSH>(GetStockObject(WHITE_BRUSH));
WndClsEx.lpszMenuName = MAKEINTRESOURCE(IDR_MAIN_MENU);
WndClsEx.lpszClassName = strAppName;
WndClsEx.hInstance = hInstance;
WndClsEx.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

if (!RegisterClassEx(&WndClsEx))
return (FALSE);

 hInst = hInstance;

 hWndMainFrame = CreateWindow(strAppName,
 WndName,

 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT,

 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 NULL,
 NULL,
 hInstance,
 NULL);

 if(!hWndMainFrame)
return (FALSE);

 // Create a child window based on the available dialog box
 hWndToolbox = CreateDialog(hInst,

 MAKEINTRESOURCE(IDD_TOOLBOX_DLG),
 hWndMainFrame,
 (DLGPROC)ToolboxProc);

 ShowWindow (hWndToolbox, SW_SHOW);
 ShowWindow(hWndMainFrame, nCmdShow);

 while (GetMessage(&msg,NULL, 0,0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 return 0;
}
//---
LRESULT CALLBACK ToolboxProc(HWND hWndDlg, UINT Msg, WPARAM wParam, LPARAM lParam)
{

switch(Msg)
{
case WM_INITDIALOG:

return TRUE;
}

231

return FALSE;
}
//---
LRESULT CALLBACK MainWndProc(HWND hWnd, UINT Msg,

 WPARAM wParam, LPARAM lParam)
{

HMENU hMenu;
RECT rctMainWnd, rctToolbox;
UINT ToolboxMenuState;

 switch(Msg)
 {

case WM_COMMAND:
switch(LOWORD(wParam))
{
case IDM_VIEW_TOOLBOX:

hMenu = GetMenu(hWndMainFrame);
ToolboxMenuState = GetMenuState(hMenu, IDM_VIEW_TOOLBOX,

MF_BYCOMMAND);
if(LOBYTE(ToolboxMenuState) & MF_CHECKED)
{

CheckMenuItem(hMenu, IDM_VIEW_TOOLBOX,
MF_BYCOMMAND | MF_UNCHECKED);

ShowWindow(hWndToolbox, SW_HIDE);
}
else
{

CheckMenuItem(hMenu, IDM_VIEW_TOOLBOX,
MF_BYCOMMAND | MF_CHECKED);

ShowWindow(hWndToolbox, SW_SHOW);
}
break;

case IDM_FILE_EXIT:
PostQuitMessage(WM_QUIT);
return 0;

};
break;

case WM_SIZE:
GetClientRect(hWndMainFrame, &rctMainWnd);
GetWindowRect(hWndToolbox, &rctToolbox);

SetWindowPos(hWndToolbox,
 HWND_TOP,
 rctMainWnd.left,
 rctMainWnd.top,
 rctToolbox.right - rctToolbox.left,
 rctMainWnd.bottom,
 SWP_NOACTIVATE | SWP_NOOWNERZORDER);

break;

 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;

 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);

232

 }

 return 0;
}
//---

A Multiple Document Interface (MDI)

Introduction

This is an example of an MDI.

Resource Header
#define IDR_MAIN_MENU 101
#define IDM_FILE_NEW 40001
#define IDM_FILE_CLOSE 40002
#define IDM_FILE_EXIT 40003
#define IDM_WINDOW_TILE 40004
#define IDM_WINDOW_CASCADE 40005
#define IDM_WINDOW_ICONS 40006
#define IDM_WINDOW_CLOSE_ALL 40007

Resource Script
#include "resource.h"

///
//
// Menu
//

IDR_MAIN_MENU MENU
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "&New\tCtrl+N", 40001
 MENUITEM SEPARATOR
 MENUITEM "&Close", 40002
 MENUITEM SEPARATOR
 MENUITEM "E&xit", 40003
 END
 POPUP "&Window"
 BEGIN
 MENUITEM "&Tile", 40004
 MENUITEM "C&ascade", 40005
 MENUITEM "Arrange &Icons", 40006
 MENUITEM "Cl&ose All", 40007
 END
END

///
//
// String Table

233

//

STRINGTABLE
BEGIN
 IDM_FILE_NEW "Creates a new document\nNew"
 IDM_FILE_CLOSE "Closes the current document\nClose"
 IDM_FILE_EXIT "Closes the application\nExit"
 IDM_WINDOW_TILE "Arranges child windows in a tile format"
 IDM_WINDOW_CASCADE "Arranges child windows in a cascade format"
 IDM_WINDOW_ICONS "Arranges the icons of minimized child windows"
 IDM_WINDOW_CLOSE_ALL "Closes all child windows"
END

Source Code
#include <windows.h>
#include "resource.h"

const char MainClassName[] = "MainMDIWnd";
const char ChildClassName[] = "MDIChildWnd";

const int StartChildrenNo = 994;

HWND hWndMainFrame = NULL;
HWND hWndChildFrame = NULL;

BOOL CreateNewDocument(HINSTANCE hInstance);
LRESULT CALLBACK MainWndProc(HWND hwnd, UINT msg,

 WPARAM wParam, LPARAM
lParam);
BOOL CreateNewDocument(HINSTANCE hInstance);

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow)

{
WNDCLASSEX WndClsEx;
MSG Msg;

WndClsEx.cbSize = sizeof(WNDCLASSEX);
WndClsEx.style = 0;
WndClsEx.lpfnWndProc = MainWndProc;
WndClsEx.cbClsExtra = 0;
WndClsEx.cbWndExtra = 0;
WndClsEx.hInstance = hInstance;
WndClsEx.hIcon = LoadIcon(NULL, IDI_ASTERISK);
WndClsEx.hCursor = LoadCursor(NULL, IDC_ARROW);
WndClsEx.hbrBackground = (HBRUSH)(COLOR_WINDOW+1);
WndClsEx.lpszMenuName = MAKEINTRESOURCE(IDR_MAIN_MENU);
WndClsEx.lpszClassName = MainClassName;
WndClsEx.hIconSm = LoadIcon(NULL, IDI_ASTERISK);

if(!RegisterClassEx(&WndClsEx))
{

MessageBox(NULL,
 "Window Registration Failed!", "Error!",
 MB_OK);

return 0;
}

if(!CreateNewDocument(hInstance))

234

return 0;

hWndMainFrame = CreateWindowEx(0L,
 MainClassName,

 "Multiple Document Application",
 WS_OVERLAPPEDWINDOW |

WS_CLIPCHILDREN,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 NULL,
 NULL,
 hInstance,
 NULL);

if(hWndMainFrame == NULL)
{

MessageBox(NULL, "Window Creation Failed!", "Error!",
MB_ICONEXCLAMATION | MB_OK);

return 0;
}

ShowWindow(hWndMainFrame, nCmdShow);
UpdateWindow(hWndMainFrame);

while(GetMessage(&Msg, NULL, 0, 0) > 0)
{

if (!TranslateMDISysAccel(hWndChildFrame, &Msg))
{

TranslateMessage(&Msg);
DispatchMessage(&Msg);

}
}
return 0;

}

HWND CreateNewMDIChild(HWND hMDIClient)
{

MDICREATESTRUCT mcs;
HWND NewWnd;

mcs.szTitle = "Untitled";
mcs.szClass = ChildClassName;
mcs.hOwner = GetModuleHandle(NULL);
mcs.x = mcs.cx = CW_USEDEFAULT;
mcs.y = mcs.cy = CW_USEDEFAULT;
mcs.style = MDIS_ALLCHILDSTYLES;

NewWnd = (HWND)SendMessage(hMDIClient, WM_MDICREATE, 0, (LONG)&mcs);

if(!NewWnd)
{

MessageBox(NULL,
 "Error creaing child window",
 "Creation Error",
 MB_OK);

}
return NewWnd;

235

}

LRESULT CALLBACK MainWndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM lParam)
{

switch(Msg)
{

case WM_CREATE:
{

CLIENTCREATESTRUCT ccs;

ccs.hWindowMenu = GetSubMenu(GetMenu(hWnd), 2);
ccs.idFirstChild = StartChildrenNo;

hWndChildFrame = CreateWindowEx(WS_EX_CLIENTEDGE,
 "MDICLIENT",

 NULL,

 WS_CHILD | WS_CLIPCHILDREN | WS_VSCROLL

 | WS_HSCROLL | WS_VISIBLE,
 CW_USEDEFAULT,

 CW_USEDEFAULT,

 680,

 460,

 hWnd,

 (HMENU)IDM_FILE_NEW,

 GetModuleHandle(NULL),

 (LPVOID)&ccs);

if(hWndChildFrame == NULL)
MessageBox(hWnd, "Could not create MDI client.",

"Error", MB_OK | MB_ICONERROR);
}
CreateNewMDIChild(hWndChildFrame);
break;
case WM_SIZE:
{

HWND hWndMDI;
RECT rctClient;

GetClientRect(hWnd, &rctClient);

hWndMDI = GetDlgItem(hWnd, IDM_FILE_NEW);
SetWindowPos(hWndMDI, NULL, 0, 0, rctClient.right,

rctClient.bottom, SWP_NOZORDER);
}
break;
case WM_CLOSE:

DestroyWindow(hWnd);
break;
case WM_DESTROY:

236

PostQuitMessage(0);
break;
case WM_COMMAND:

switch(LOWORD(wParam))
{

case IDM_FILE_NEW:
CreateNewMDIChild(hWndChildFrame);

break;
case IDM_FILE_CLOSE:
{

HWND hChild =
(HWND)SendMessage(hWndChildFrame, WM_MDIGETACTIVE,0,0);

if(hChild)
{

SendMessage(hChild, WM_CLOSE, 0,
0);

}
}
break;
case IDM_FILE_EXIT:

PostMessage(hWnd, WM_CLOSE, 0, 0);
break;
case IDM_WINDOW_TILE:

SendMessage(hWndChildFrame, WM_MDITILE,
0, 0);

break;

case IDM_WINDOW_CASCADE:
SendMessage(hWndChildFrame,

WM_MDICASCADE, 0, 0);
break;

case IDM_WINDOW_ICONS:
SendMessage(hWndChildFrame,

WM_MDIICONARRANGE, 0, 0);
break;

case IDM_WINDOW_CLOSE_ALL:
{

HWND hWndCurrent;

do {
hWndCurrent =

(HWND)SendMessage(hWndChildFrame, WM_MDIGETACTIVE,0,0);
SendMessage(hWndCurrent,

WM_CLOSE, 0, 0);
}while(hWndCurrent);

}
break;

default:
{

if(LOWORD(wParam) >= StartChildrenNo)
{

DefFrameProc(hWnd,
hWndChildFrame, WM_COMMAND, wParam, lParam);

}
else
{

237

HWND hWndCurrent =
(HWND)SendMessage(hWndChildFrame, WM_MDIGETACTIVE,0,0);

if(hWndCurrent)
{

SendMessage(hWndCurrent,
WM_COMMAND, wParam, lParam);

}
}

}
}

break;
default:

return DefFrameProc(hWnd, hWndChildFrame, Msg, wParam,
lParam);

}
return 0;

}

LRESULT CALLBACK ChildWndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)
{

switch(msg)
{

case WM_CREATE:
break;

case WM_MDIACTIVATE:
{

HMENU hMenu, hFileMenu;
UINT EnableFlag;

hMenu = GetMenu(hWndMainFrame);
if(hwnd == (HWND)lParam)
{

EnableFlag = MF_ENABLED;
}
else
{

EnableFlag = MF_GRAYED;
}

EnableMenuItem(hMenu, 1, MF_BYPOSITION | EnableFlag);
EnableMenuItem(hMenu, 2, MF_BYPOSITION | EnableFlag);

hFileMenu = GetSubMenu(hMenu, 0);

EnableMenuItem(hFileMenu, IDM_FILE_CLOSE, MF_BYCOMMAND |
EnableFlag);

EnableMenuItem(hFileMenu, IDM_WINDOW_CLOSE_ALL,
MF_BYCOMMAND | EnableFlag);

DrawMenuBar(hWndMainFrame);
}
break;

default:
return DefMDIChildProc(hwnd, msg, wParam, lParam);

}
return 0;

}

238

BOOL CreateNewDocument(HINSTANCE hInstance)
{

WNDCLASSEX WndClsEx;

WndClsEx.cbSize = sizeof(WNDCLASSEX);
WndClsEx.style = CS_HREDRAW | CS_VREDRAW;
WndClsEx.lpfnWndProc = ChildWndProc;
WndClsEx.cbClsExtra = 0;
WndClsEx.cbWndExtra = 0;
WndClsEx.hInstance = hInstance;
WndClsEx.hIcon = LoadIcon(NULL, IDI_WARNING);
WndClsEx.hCursor = LoadCursor(NULL, IDC_ARROW);
WndClsEx.hbrBackground = (HBRUSH)(COLOR_BTNFACE + 1);
WndClsEx.lpszMenuName = NULL;
WndClsEx.lpszClassName = ChildClassName;
WndClsEx.hIconSm = LoadIcon(NULL, IDI_WARNING);

if(!RegisterClassEx(&WndClsEx))
{

MessageBox(NULL,
 "There was a problem when attempting to create a document",
 "Application Error",

 MB_OK);
return FALSE;

}
else

return TRUE;
}

239

